Способ обнаружения оптических и оптико-электронных средств наблюдения и устройство для его осуществления. Оптико-механические и оптико-электронные сканеры Оптико электронный способ сканирования

Оптико-электронное оснащение лазеров

Оптическое сканирование, параллельный ввод информации об оптических свойствах объектов. Винтовой, зигзагообразный, спиральный, конический просмотр зоны (объекта). Лазерные сканирующие устройства: принципы, способы и схемы построения. Оптическое и оптико-механическое обеспечение лазерного сканирования. Позиционирование и синхронизация лазерного луча. Волоконные световоды в системах с полупроводниковыми лазерами. Техника соединения лазеров и световодов; цилиндрические, сферические, стержневые линзы. Схемотехника управления полупроводниковыми лазерами. Возбуждение, модуляция, ретрансляция лазерного излучения. Стабилизация мощности излучения по электрическим и оптическим каналам.

Принципы и схемы оптического сканирования

4.1. Пояснить термин «сканирование» с акцентом на оптическое обеспечение процесса.

(от англ. scan - поле зрения) рассматривается как управляемое пространственное перемещение по заданному закону достаточно узкого целенаправленного физического (материального) излучения (потока радиоволн, пучка электронов, луча света). Вместе с тем сканирование естественно воспринимать как процесс систематического (последовательного) обзора ограниченной зоны (области, сферы) при строго ориентированном перемещении радиолуча, электронного пучка, оптического луча по определенному маршруту и закону. Сканирование позволяет обнаружить объекты, находящиеся в зоне обзора, наблюдать за ними, считывать и вводить информацию о характеристиках и свойствах объектов.

Оптическое сканирование осуществляется тщательно сфокусированным, целенаправленным лучом света. Этим достаточно жестким условиям в наибольшей степени отвечает оптическое излучение газовых и твердотельных лазеров.

4.2. Рассмотреть принципы, схему, процессы одномерного (линейного) оптического сканирования плоского объекта узким (игольчатым) лучом, исследуя (моделируя) оптические характеристики объекта в проходящем свете.

Игольчатым называется луч света, интенсивность которого по всей длине сосредоточена в области (сечении) весьма небольшой площади. Как правило, предполагается также, что игольчатый луч симметричен относительно основного направления максимальной интенсивности излучения.

В конкретный момент времени узкий луч света неизменного уровня Φ 0 освещает отдельный участок (фрагмент) одномерного (линейного) объекта (например, строки текста) и создает на этом участке сканирующее (световое) пятно (рис. 4.1, а). Далее сканирующее пятно ритмично сдвигается (на рисунке вправо) вдоль объекта, освещая новые его фрагменты. Предполагаемые границы освещаемых фрагментов показаны на рис. 4.1, а пунктирными линиями.

Потоки света Φ пр, проходящие через фрагменты полупрозрачного объекта, далее регистрируются многоэлементным фотоприемником (рис. 4.1, б), причем каждому фрагменту объекта соответствует определенный фоточувствительный элемент фотоприемника. Если фотоприемник является полупроводниковым, то в освещаемом фоточувствительном элементе за счет внутреннего фотоэффекта генерируется заряд электронов, уровень которого пропорционален экспозиции (интенсивности падающего света и длительности освещения). Этот заряд по окончании заданного интервала сканирования передается в выходное устройство фотоприемника, которое формирует видеосигнал электрического напряжения или тока (рис. 4.1, в). Амплитуда такого видеосигнала строго соответствует световому потоку Φ прi , проходящему через i-й фрагмент объекта, и, таким образом, дает четкую информацию об оптической плотности объекта в контролируемой части.

Тем самым оптическое сканирование дает возможность преобразовать оптические характеристики линейного объекта (рис. 4.1, а) в пакет фотогенерированных зарядов разного уровня и далее в последовательность электрических видеосигналов различной амплитуды.

4.3. Отметить особенности линейного сканирования плоского объекта (рис. 4.1, а) при исследовании его оптических характеристик в отраженном свете.

В этом случае сканирование происходит по уже рассмотренному циклу (рис. 4.1, а), но фоточувствительные элементы многоэлементного фотоприемника поочередно воспринимают потоки света Φ отрi , отраженные от соответствующих фрагментов исследуемого объекта (рис. 4.2
). Существенно не изменяются временные диаграммы (рис. 4.1, в) формирования выходных видеосигналов. Очевидно, однако, что в варианте (рис. 4.2
) амплитуда видеосигналов определяется в первую очередь коэффициентом отражения r сканируемого света Φ 0 от объекта (а не коэффициентом пропускания τ, как в предыдущем варианте).

4.4. Рассмотреть принципы, схему, процессы параллельного ввода информации плоским оптическим лучом. Выделить элементы сканирования в рассматриваемом цикле получения и преобразования данных об оптических характеристиках объекта.

Согласно плоским называется луч, у которого угол раствора в одной плоскости много меньше, чем в другой. Плоский луч имеет по всей длине сечение, подобное светоизлучающей щели: достаточно широкое - в одном (например, горизонтальном) направлении, весьма узкое - в другом (вертикальном).

Использование плоского оптического луча позволяет одновременно освещать все фрагменты одномерного (линейного) объекта потоками света одинаковой величины Φ 0 (рис. 4.3, а). Каждый фрагмент объекта имеет непосредственную оптическую связь с соответствующим элементом многоэлементного фотоприемника. Поэтому элементы фотоприемника одновременно воспринимают и регистрируют потоки света Φ прi , проходящие через i-е фрагменты исследуемого объекта.

В каждом элементе полупроводникового фотоприемника за счет внутреннего фотоэффекта генерируются и накапливаются заряды, уровень которых пропорционален конкретным величинам падающих потоков света Φ прi . Далее по известной схемотехнике (с использованием многофазного импульсного возбуждения элементов фотоприемника) накопленный пакет фотогенерированных зарядов переводится в выходное устройство, где формируется в виде последовательности электрических видеосигналов (рис. 4.3, б). Эти сигналы поочередно поступают в выходную цепь устройства по окончании импульса оптического излучения, освещающего объект, с прекращением процесса накопления фотогенерированного заряда.

В устройстве (рис. 4.3, а) осуществляется одновременный параллельный ввод информации, без элементов входного сканирования, характерных для последовательного ввода информации (см. рис. 4.1, а). Вместе с тем последовательное смещение заряда, накопленного в элементах фотоприемника, к его выходу путем импульсного, многофазного возбуждения элементов можно (в значительной степени условно) считать процессом сканирования (по существу считывания) накопленной информации. Такое развитие процесса может быть названо самосканированием .

4.5. Рассмотреть варианты двумерного (двухкоординатного) оптического сканирования объекта (зоны, пространства) узким (игольчатым) лучом света.

Выделим три характерных варианта двумерного сканирования , представленных на рис. 4.4
. На рисунках показаны объекты (плоскости) сканирования, сканирующие (световые) пятна (заштрихованные квадраты) и маршруты их движения в процессе сканирования.

В базовом варианте (рис. 4.4, а
) двухкоординатный просмотр объекта сканирующим пятном осуществляется последовательно и построчно. Сканирующее пятно ритмично проходит первую строку (линейку) слева направо и скачком (достаточно быстро) переходит к началу второй строки, которую далее в заданном ритме проходит слева направо. Эта схема движения светового пятна выдерживается при сканировании последующих строк двумерного объекта.

В варианте (рис. 4.4, б
) осуществляется последовательно-последовательный просмотр объекта сканирующим пятном. По уже рассмотренной методике «чисто» последовательного сканирования (рис. 4.4, а
) просматривается лишь определенная зона (в данном случае третья часть) объекта.

По окончании этого просмотра сканирующее пятно быстро переходит к началу второй зоны (в центре объекта) и последовательно просматривает эту зону по первоначальному маршруту. На заключительном этапе сканируется последняя (правая, третья) зона объекта.

В варианте (рис. 4.4, в
), который естественно считать последовательно-параллельным, все (три) выделенные зоны объекта сканируются одновременно (параллельно) по маршруту последовательного сканирования (рис. 4.4, а
).

4.6. Рассмотреть принципы и варианты параллельного ввода информации об оптических характеристиках двумерного (двухкоординатного) объекта.

В основном техническом варианте (рис. 4.5, а
) исследуемый объект освещается неизменным потоком света Φ 0 одновременно и полностью (по всей площади). Проходящий свет Φ пр в зависимости от оптической плотности различных фрагментов объекта имеет неодинаковую интенсивность. Далее оптический поток Φ пр воспринимается многоэлементным фотоприемником (матричным фоточувствительным прибором с зарядовой связью или с инжекцией заряда). Дальнейшие операции, обеспечивающие восприятие, накопление, сдвиг (перенос) и вывод оптической информации в форме пакетов фотогенерированных электронов и электрических видеосигналов, детально отработаны .

Успешно используется также частичный оптический просмотр объекта (рис. 4.5, б)
по методике «чисто» параллельного ввода оптической информации (рис. 4.5, а
). При этом сканирующее пятно, занимающее лишь часть площади объекта, сдвигается последовательно вдоль поверхности объекта, попеременно освещая необходимые (заданные) участки и зоны. Такой оптический просмотр объекта является по существу параллельно-последовательным.

Параллельный просмотр и ввод оптической информации по схемам (рис. 4.5
) имеет ряд существенных преимуществ: высокое быстродействие, четкую организацию информационных операций, добротную микроэлектронную базу.

4.7. Рассмотреть и наглядно (объемно) представить перемещение узкого (игольчатого) сканирующего луча при винтовом, зигзагообразном, спиральном и коническом просмотре зоны (объекта).

Варианты такого сканирования разнообразны и широко применяются в радиолокации. В полиграфии эти технические приемы используются не столь активно, но по существу могут быть полезны, например, в системах технического зрения.

При сканировании игольчатым лучом сложное движение луча целесообразно рассматривать в виде двух простых движений: переносного и относительного. Переносное (поступательное) движение совершается вокруг неподвижной оси. Относительное движение небольшого радиуса происходит вокруг движущейся оси и обеспечивает дополнительный (локальный) осмотр зоны (объекта) в процессе сканирования.

На рис. 4.6, а показано перемещение луча при винтовом сканировании: переносное движение луча - вращательное с постоянной угловой скоростью; относительное движение луча - колебательное (в плоскости, перпендикулярной плоскости вращения) со значительно меньшей скоростью.

На рис. 4.6, б, в представлено перемещение луча при зигзагообразном сканировании. При этом учтено, что переносное и относительное движения луча - колебательные, но с различным соотношением скоростей.

Рис. 4.6, г иллюстрирует перемещение луча при спиральном сканировании. Переносное движение такого луча является вращательным, а относительное - колебательным (но в данном примере - с меньшей скоростью).

На рис. 4.6, д показано перемещение луча при поступательно-коническом сканировании. Учитывается, что переносное движение луча - колебательное, а относительное - вращательное (но со значительно большей скоростью). Частный, но распространенный случай поступательно-конического сканирования - «чисто» коническое сканирование - иллюстрируется рис. 4.6, е. В этом случае движение луча является вращательным (круговым), а направление максимальной интенсивности излучения ОА смещено относительно оси вращения ОО? на постоянный угол α.

Способы и средства лазерного сканирования

4.8. Пояснить особенности использования лазерного сканирования в полиграфической технике ввода (считывания, преобразования) и вывода (формирования, записи) изображений.

Разделяют процессы входного и выходного лазерного сканирования ; именно в этих режимах лазеры используются в полиграфии наиболее часто, эффективно и ярко. В первом режиме сканирование лазерным лучом позволяет преобразовать информацию, содержащуюся в двумерном оптическом изображении, в серию одномерных электрических сигналов. Во втором режиме изобразительная информация, физическими носителями которой являются электрические сигналы с переменной (модулированной) амплитудой, частотой, длительностью, путем лазерного сканирования развертывается в двумерное оптическое изображение.

В процессе входного сканирования тщательно сфокусированный лазерный луч перемещается и последовательно освещает небольшие участки (фрагменты) изображения. Реакция объекта на такое локальное (точечное) лазерное воздействие в приходящем или отраженном свете воспринимается фотоприемником, который на каждом этапе (шаге) сканирования формирует электрический видеосигнал. Амплитуда конкретного видеосигнала четко соответствует оптической плотности освещенного фрагмента изображения. Таким образом, последовательность (серия, пакет) видеосигналов заряда, тока, напряжения дискретно представляет (отражает) в импульсной электрической форме оптическую картину регистрируемого изображения. Входное сканирование применяется для считывания, регистрации, ввода, анализа, коррекции изображений в сканерах, читающих и гравировальных автоматах, устройствах цифрового кодирования иллюстраций и шрифтов, цветокорректорах.

В процессе выходного сканирования лазерный луч перемещается по поверхности материала, чувствительного к оптическим воздействиям.

Такой светочувствительной средой могут служить фотопроводящие и электрофотографические слои, фото- и термочувствительные пленки. Реакция конкретного светочувствительного материала на внешнее оптическое (лазерное) воздействие зависит от характеристик (мощности, интенсивности, длительности) лазерного импульса. Модулируя эти характеристики лазерного луча электрическими сигналами, однозначно связанными с оптической плотностью фрагментов изображения (оригинала), можно воспроизвести изображение (получить репродукцию, оттиск, копию исходной оптической картины) на светочувствительном материале. Лазерное выходное сканирование используется для вывода, отображения, формирования, записи изображений в принтерах и электрографических аппаратах, формных и печатных автоматах.

Лазерное сканирование в рассматриваемых (входном и выходном) режимах и процессах существенно различается по функциональным и техническим признакам, нацелено на различные области применения. Однако технические средства входного и выходного лазерного сканирования различаются не столь существенно (во многом однотипны).

В процессе входного лазерного сканирования изображения световое пятно (луч лазера) продвигается по поверхности сканируемого объекта последовательно и ритмично, но дискретно (с небольшим шагом), считывая лишь отдельные фрагменты (растровые элементы) изображения. Таким образом, при подобном сканировании изображение разделяется (растрируется) на отдельные микроэлементы (точки, отрезки, линии) и в дальнейшем обрабатывается, хранится, воспроизводится в дискретной (растрированной) форме.

При выходном лазерном сканировании изображение формируется постепенно из отдельных растровых элементов: линий, отрезков, точек. Эти элементы записывает лазерный луч, причем световое пятно, созданное лазером на поверхности материала, чувствительного к оптическим воздействиям, последовательно (с определенным шагом) перемещаясь в горизонтальном и (или) вертикальном направлениях, обходит в итоге всю фоточувствительную площадь материала, на которой записывается изображение.

Процессы растрирования, используемые при считывании и записи изобразительной информации, непосредственно влияют на оптико-механические способы и средства лазерного сканирования изображений.

4.10. Рассмотреть схемы и маршруты оптико-механической развертки изображений (рис. 4.7
), применяемой в лазерных сканирующих устройствах .

Согласно в полиграфии, как правило, используется метод прямоугольного линейного растрового сканирования изображений. При таком сканировании лазерный луч перемещается (разворачивается) вдоль прямых линий (строк), расположенных весьма близко, сканирование одной линии заканчивается быстрым переходом луча к началу следующей (смежной) линии.

На рис. 4.7
представлены варианты лазерного сканирования изображений, формируемых на светочувствительном материале, который размещается на плоской основе (рис. 4.7, а) или на цилиндрической поверхности (рис. 4.7 б, г
). В вариантах (рис. 4.7 а, б
) на светочувствительном материале записываются линейные растровые линии, а в двух других вариантах используется цилиндрическая запись на внутреннюю (рис. 4.7, в
) или на внешнюю (рис. 4.7, г
) поверхности цилиндра.

Растровая развертка обеспечивается по двум ортогональным составляющим - строчной разверткой (по оси х) и кадровой разверткой (по оси у), которая создает необходимый интервал между соседними строками. Обычно изображение непрерывно формируется вдоль оси х (отклонением лазерного луча) и дискретно вдоль оси у (сдвигом светочувствительного материала).

4.11. Рассмотреть состав и взаимодействие компонентов, пояснить принцип действия лазерного сканирующего устройства , представленного на рис. 4.8
.

Лазер 1 служит источником когерентного оптического излучения, интенсивность которого существенно изменяется модулятором 2. Модулятор управляется электрическими сигналами, отражающими оптическую картину считываемого изображения (оригинала). Телескопическая система 3 расширяет лазерный пучок и уменьшает его расходимость. Система 3 состоит из двух компонентов: объекта, воспринимающего лазерное излучение, и окуляра, формирующего выходные лучи света. Введены зеркала (плоские 4, 9, 10 и сферические 8), объектив 5, многогранный призменный дефлектор 6. Изображение записывается на фотоматериал 7.

В сканирующем устройстве (рис. 4.8
) луч лазера 1 проходит через модулятор 2 и телескопическую систему 3, отражается от зеркал 4 и 10, существенно изменяя направление, и через фокусирующий объектив 5 попадает на грань дефлектора 6. Призма 6 непрерывно вращается с большой частотой. Лазерный луч, отраженный от грани дефлектора 6 и далее от зеркал 8 и 9, достигает фотоматериала 7 и смещается в его плоскости, формируя линию (строку) изображения. Таким образом, особенностью рассматриваемого устройства является послеобъективная развертка изображения. В свою очередь сферическое зеркало 8 и зеркало 10 (с пьезоэлементом) позволяют компенсировать (устранить) искажения при записи изображения, возникающие из-за криволинейности поверхности фотоматериала и неодинакового наклона граней (зеркал) призмы 6.

По данным , в сканирующем устройстве (рис. 4.8
) для горизонтальной развертки изображения используются аргоновый лазер и призменный дефлектор, вращающийся с частотой 4 тыс.об/мин. Частота вращения призмы контролируется тахометром. Изображение записывается лазерным пятном диаметром 25 мкм на формат А2 с линиатурой 400 лин/см. Время вывода полос формата А2 составляет примерно 1 мин.

4.12. Рассмотреть схему построения и принцип действия лазерного сканирующего устройства (рис. 4.9
) с субрастровой записью изображений .

Особенностью такой записи изображений является формирование в процессе горизонтальной развертки строки вертикальной линии (субрастра) высотой h, составляющей несколько миллиметров. Таким образом, фотоматериал экспонируется полосами площадью h × l, где l - длина горизонтальной строки развертки. После завершения экспонирования полосы фотоматериал сдвигается ортогонально строке на величину h.

Устройство (рис. 4.9
), реализующее принцип субрастровой записи изображений, содержит лазер 1, отражающие зеркала 2 и 3, модулятор 4, управляющий интенсивностью лазерного пучка, и телескопическую систему 5, уменьшающую его расходимость, дефлектор 6, отклоняющий луч на высоту h перпендикулярно строке изображения, объектив, состоящий из двух компонентов 7 и 8, фокусирующий лазерный луч на фотоматериал 10, колеблющееся зеркало 9, осуществляющее развертку лазерного луча по строке длиной l.

В процессе сканирования луч лазера 1, отражаясь от системы зеркал 2 и 3, достигает модулятора 4. Это устройство управляется импульсами электрического напряжения и в зависимости от оптической плотности фрагментов записываемого черно-белого изображения пропускает лазерный луч или перекрывает канал его дальнейшего продвижения. Модулированный пучок лазерного излучения далее, проходя через телескопическую систему 5, акустооптический дефлектор 6, фокусирующий объектив 7-8 и отражаясь от колеблющегося зеркала 9, достигает фотоматериала 10 и формирует на его поверхности горизонтальную полосу площадью h × l.

Следует отметить, что в данном сканирующем устройстве, как и в ранее рассмотренном устройстве (рис. 4.8
), обеспечивается послеобъективная развертка изображений.

4.13. Рассмотреть схему построения и принцип действия лазерного сканирующего устройства (рис. 4.10
) с дообъективной разверткой изображения .

Сканирующее устройство содержит аргоновый лазер 1, модулятор 6, дефлекторы 9 и 11 (с вращающимся зеркалом), отражающие (поворотные) зеркала 2, 4, 7, 8, 10 и 13, полупрозрачное зеркало 3, телескопы 5 и 15, объектив 12. Дополнительно введены растровая линейка 16 и кварцевый параллелепипед 17, боковые грани которого покрыты алюминием, а на торцах размещены фотоэлектрические умножители 18 и 19. Лазерный луч записывает изображение на плоскость фоточувствительного материала 14.

Луч лазера 1 отражается от плоского зеркала 2 и расщепляется зеркалом 3 на два луча: основной (показанный далее непрерывными линиями) луч, осуществляющий запись изображения, и вспомогательный (показанный пунктирными линиями) луч, обеспечивающий синхронизацию развертки. Основной луч отражается от зеркала 4, расширяется телескопом 5 и направляется в модулятор 6, который изменяет интенсивность луча по закону, заданному исходным изображением (оригиналом). Модулированный лазерный луч поворотными зеркалами 7 и 8 направляется в акустооптический дефлектор 9, который отклоняет луч в вертикальном направлении (перпендикулярно основному горизонтальному направлению луча). После дефлектора, отражаясь от зеркала 10, лазерный пучок попадает на вращающееся зеркало дефлектора 11, ориентированного на горизонтальную развертку. Объектив 12 с отражением от зеркала 13 фокусирует лазерный луч на плоскость фотоматериала 14. Таким образом, в рассматриваемом сканирующем устройстве запись изображения осуществляется на основе оптической системы дообъективной развертки.

Вспомогательный лазерный луч, отраженный зеркалом 3, расширяется телескопом 15, разворачивается подвижным зеркалом дефлектора 11 и фокусируется объективом 12 на растровую линейку 16. Лучи, прошедшие через линейку, собираются параллелепипедом 17. Фотоэлектрические умножители 18 и 19 преобразуют световые сигналы в электрические, которые, в свою очередь, обеспечивают синхронизацию развертки.

4.14. Указать оптические, оптико-механические, электро- и акустооптические средства, которые применяются в технике лазерного сканирования изображений.

Ритмичное широкодиапазонное отклонение лазерного луча, обеспечивающее в конечном счете построчное сканирование фотоматериала, осуществляется колебательными или вращающимися зеркальными дефлекторами: плоскими, призменными, многогранными. Разнообразен набор зеркал: плоских, сферических, непрозрачных и полупрозрачных, обеспечивающих отражение, отклонение, поворот, пропускание лазерных лучей. Эти же функции в той или иной мере могут выполнять отражающие и преломляющие призмы. Важная роль в технике формирования лазерных лучей и пучков отводится собирающим, рассеивающим, преобразующим линзам, объективам, телескопам. Управляемую модуляцию лазерного излучения осуществляют электро- и акустооптические модуляторы. Дозированное отклонение лазерных лучей обеспечивают акустооптические дефлекторы.

4.15. Пояснить состав и действие оптико-механических устройств , обеспечивающих сканирование лазерным лучом внутренней (рис. 4.11, а
) и внешней (рис. 4.11, б
) поверхностей цилиндра.

Рассматриваемые технические решения имеют прямое отношение к лазерным сканирующим устройствам с цилиндрической записью изображений на фоточувствительные материалы, закрепленные на внутренней (см. рис. 4.7, в
) или на внешней (см. рис. 4.07, г
) поверхности цилиндра. Устройства содержат лазер 1, объектив 2, поворотные зеркала 3, сканируемый цилиндр 4, противовес 5 для балансировки.

По схеме, приведенной на рис. 4.11, а
, сканируется внутренняя поверхность цилиндра, причем используется только одно поворотное зеркало, располагаемое на оптической оси, совмещенной с осью вращающейся системы. Это зеркало также перемещается вместе с объективом параллельно поверхности цилиндра, обеспечивая кадровую развертку. Компактное устройство (рис. 4.11 а
), обладает очевидными техническими достоинствами; однако в таком варианте сканирования затруднителен визуальный контроль воспроизводимого изображения.

На рис. 4.11, б
представлен второй вариант вращающейся фокусирующей системы, в котором осуществляется сканирование внешней поверхности цилиндра. В таком устройстве обеспечивается надежное крепление освещаемого фотоматериала и четко контролируется процесс записи изображения. Однако оптическая система устройства, содержащая несколько жестко фиксированных поворотных зеркал, становится достаточно сложной.

Возможны различные комбинации представленных устройств сканирования; в зависимости от конкретных технических решений функции вращения и перемещения по образующей могут распределяться между объективом и цилиндром.

4.16. Рассмотреть варианты оптико-механических дефлекторов лазерных лучей , представленные на рис. 4.12
.

Представлены дефлекторы с плоским колеблющимся зеркалом (рис. 4.12, а
), вращающиеся призменные дефлекторы с одной отражающей зеркальной поверхностью (рис. 4.12, б
) и с многими зеркальными гранями (рис. 4.12 в, г
).

В дефлекторе (рис. 4.12, а
) плоское зеркало укреплено на роторе двигателя, жестко соединенном с пружиной, создающей вращательный момент. Управление дефлектором для сканирования луча с постоянной скоростью осуществляется генератором линейно изменяющегося напряжения. Согласно данным угол отклонения колеблющихся дефлекторов достигает 40°. Однако частота колебаний зеркала дефлектора невысока (сотни герц), а скорость сканирования невелика.

Высокое качество записи изображений обеспечивает дефлектор с вращающейся трехгранной призмой, имеющей одну зеркальную грань (рис. 4.12, б
). Однако и в этом техническом варианте скорость сканирования оказывается относительно небольшой.

Использование многогранных пирамидальных (рис. 4.12, в
) и призменных (рис. 4.12, г
) дефлекторов позволяет существенно (пропорционально числу граней) увеличить скорость сканирования. В лазерных сканирующих устройствах применяются зеркальные пирамиды и призмы с числом граней от 3 до 8 ; известны призменные дефлекторы с 12 и даже 24 зеркальными гранями . Следует, однако, учитывать, что изготовление многогранных зеркальных дефлекторов с необходимой весьма высокой точностью является сложной технологической задачей.

4.17. Пояснить механизм, выделить технические погрешности сканирования лазерного луча с помощью многогранного зеркального дефлектора .

Согласно рис. 4.13
лазерный луч 1, отраженный от одной из зеркальных граней дефлектора 2, попадает на поверхность фотопроводящего материала 3. В процессе вращения дефлектора угол наклона отражающей грани призмы относительно оси, перпендикулярной поверхности фотоматериала, непрерывно изменяется; при этом отраженный луч на рассматриваемой стадии проходит строку сканируемого изображения. Число таких проходов за один оборот (период) вращения дефлектора равно числу отражающих зеркальных граней призмы.

При таком лазерном сканировании изображение записывается на фотоматериале с характерными искажениями. Следует учитывать, что фокус 4 лазерного луча 1 (рис. 4.13
) перемещается по дуге окружности, фотоматериал 3, размещенный на плоской или цилиндрической основе, имеет в плоскости сканирования ровную (прямолинейную) поверхность, многогранный призменный дефлектор 2 вращается с постоянной скоростью.

В процессе сканирования фокус 4 лазерного луча оказывается, в основном, вне (выше или ниже) поверхностной линии (строки) сканирования фотоматериала. Поэтому размеры (диаметр) лазерного пятна на фотоматериале изменяются вдоль линии развертки, а форма лазерного пятна не остается постоянной. Вместе с тем расстояние между отражающей гранью призмы и поверхностью фотоматериала (по линии развертки) не остается постоянным (увеличивается от центра к краям фотоматериала), из-за чего скорость движения лазерного пятна по поверхности фотоматериала непрерывно изменяется. Таким образом, лазерная развертка строки изображения оказывается нелинейной.

4.18. Представить и пояснить способы и технические средства, позволяющие устранить погрешности лазерного сканирования фотоматериала с использованием вращающихся зеркальных дефлекторов .

Эффективным оказывается введение параболического полностью отражающего зеркала между многогранным призменным дефлектором и плоскостью развертки лазерного луча (на поверхности фотоматериала). В такой оптической системе фокус лазерного луча перемещается строго по линии развертки и все искажения, связанные с нарушением фокусировки лазерного излучения на поверхности фотоматериала, устраняются. По данным , в сканирующих лазерных устройствах с параболическими зеркалами искажения записываемого изображения не превышают 0,02% при углах развертки до 40°.

Устранение дефектов сканирования и записи изображения, связанных с нелинейностью строчной развертки, достигается применением фокусирующих fθ-объективов, в которых искусственно вводится необходимая дисторсия (искривление). При этом существенно повышается линейность строчной развертки.

4.19. Пояснить действие формирователя символов (рис. 4.14
), в котором стробирование лазерного луча осуществляется с помощью временной шторки .

Скорость сканирования лазерным лучом поверхности фотоматериала (с использованием многогранного зеркала) непостоянна. Расстояние между отражающей гранью зеркала и поверхностью фотоматериала увеличивается от центра к краям; поэтому расстояние, которое лазерный луч проходит к краю фотоматериала, заметно больше, чем к середине экспонируемого объекта. Необходимо, чтобы лазерный луч достигал фотоматериала с определенными временными задержками. Эта операция в устройстве (рис. 4.14
) осуществляется временно 2й шторкой.

Поверхность фоточувствительного барабана 1 перекрывается временной шторкой 2 с узкими прозрачными щелями 3. Расстояние между щелями равно ширине поля печатных символов. Если основной лазерный луч 4 попадает на щель во время сканирования, то фотоприемник, размещенный за щелью, вырабатывает электрический сигнал. Таким образом регистрируется положение основного лазерного луча 4, а вместе с ним и пишущих лазерных лучей 5. Электронное устройство, реагирующее на сигналы фотоприемников, вырабатывает сигналы включения пишущих лазерных лучей. Если записывается несколько горизонтальных точек, то луч остается включенным. Во время одного прохода пишется одна широкая линия лазерным лучом, состоящим из шести пишущих лучей; все поле символа состоит из четырех таких широких линий.

Фоточувствительный барабан вращается непрерывно, поэтому во время одного прохода лазерного луча необходимо устанавливать определенный угол между осью барабана и плоскостью сканирования, что гарантирует параллельность экспонированных строк.

В высокопроизводительных печатающих устройствах отклонение пишущих лазерных лучей обеспечивается акустооптическими дефлекторами, а вместо временной шторки используется оптическое корректирующее устройство (сканирующие линзы плоских фронтов).

4.20. Указать причины нестабильного положения, неритмичного движения лазерного луча при сканировании изображения. Выделить способы и средства синхронизации передвижения лазерного луча в процессе развертки растровой строки.

При сканировании осуществляют синхронизацию положения лазерного луча в плоскости изображения. Для этого следят за координатой сканирующего луча и дискретно вырабатывают синхросигналы по мере прохождения лучом отрезков пути, равных или кратных величине, обратной линиатуре. Системы синхронизации необходимы, так как скорость движения луча вдоль растровой строки непостоянна из-за колебаний электрического напряжения, управляющего оптико-механическим дефлектором, износа механических деталей, неточности в изготовлении зеркальных поверхностей многогранных призм и других причин.

В лазерных сканирующих устройствах синхронизация осуществляется за счет определения положения лазерного луча в ходе развертки растровой строки с помощью измерительных устройств, связанных с дефлектором или расположенных в плоскости изображения. Этот способ реализуется применением систем отсчета синхроимпульсов на основе шкал на растровых дисках и линейках, а также на основе лазерного интерферометра.

4.21. Пояснить назначение и действие системы отсчета синхроимпульсов на основе круговой шкалы (рис. 4.15
).

Сигналы синхронизации в системах отсчета с круговыми шкалами поступают от датчика, состоящего из двух соосно расположенных прозрачных дисков с несколькими группами непрозрачных рисок (рис. 4.15
). Одни из дисков 2 закреплен на валу оптико-механического зеркального дефлектора 1 и вращается вместе с дефлектором. Второй растровый диск 3 неподвижен. Число групп непрозрачных рисок 4 равно числу зеркальных граней дефлектора. Синхроимпульсы создаются двумя парами светодиодов 5 и фототранзисторов 6, расположенных на двух диаметрально противоположных сторонах дисков.

Фокусирующий объектив обеспечивает равномерное движение лазерного луча вдоль строки сканирования, и поэтому, зная угловое перемещение дефлектора, можно точно определить положение лазерного луча в плоскости изображения. Для запуска схемы синхронизации применяется детектор начала строки сканирования.

4.22. Пояснить применение растровых линеек для позиционирования и синхронизации лазерного луча в плоскости изображения.

Высокую точность позиционирования и синхронизации может обеспечить датчик , отслеживающий положение лазерного луча непосредственно в плоскости изображения. Таким датчиком служит растровая линейка - полоса прозрачного материала, на который нанесен растр из непрозрачных рисок.

Сканируется вспомогательным лазерным лучом синхронно с разверткой основного записывающего луча. Свет, прошедший сквозь линейку, собирается фотоприемником, и на выходе электронного формирователя генерируются синхронизирующие импульсы. Частота растровых рисок на линейке определяется требуемой линиатурой в горизонтальном направлении.

В качестве фотоприемника используют фотодиод, длина активной зоны которого равна длине растровой линейки. При использовании точечных фотоприемников световой луч, перемещающийся по растровой линейке, сводится в неподвижную точку с помощью эллиптического зеркала, установленного за растровой линейкой. В одном из фокусов зеркала расположен фотоприемник, а в другом - отражающая грань дефлектора.

Для сбора света, прошедшего линейку, может использоваться кварцевый параллелепипед, покрытый алюминием всюду, кроме торцов. Два фотоэлектрических умножителя, расположенные с торцов параллелепипеда, преобразуют световые сигналы в электрические.

Применение растровых линеек требует дополнительного луча, который создается либо делением основного луча на два, либо вторым лазером, что в обоих случаях значительно усложняет оптическую систему сканирующего устройства.

4.23. Рассмотреть применение в сканирующем устройстве лазерного интерферометра.

Известны сканирующие устройства , в которых используется лазерный интерферометр с несимметричным ходом лучей относительно оси поворота колеблющегося зеркального дефлектора (рис. 4.16). Это достигается установкой отражателей 3 на качающемся зеркале 4 на одинаковом расстоянии от оси его качания. Регистрация углового положения зеркала 4 осуществляется счетом интерференционных полос во входном зрачке фотодатчика 1. Полосы возникают в результате наложения двух когерентных излучений с интенсивностью I 1 иI 2 , которые образованы путем разделения светоделительной призмой 2 вспомогательного лазерного луча сканирующего устройства.

При интерференции наблюдается перераспределение интенсивности света в полосах интерференционной картины. Полная интенсивность определяется соотношением

где σ - оптическая разность хода интерферирующих волн.

Максимум и минимум интенсивности соответственно

при |σ| = 0, 2π, 4π;

при |σ| = π, 3π.

Если I 1 = I 2 , то с учетом

Следовательно, интенсивность будет изменяться от минимального значения I min = 0 до максимального I max = 4I 1 .

Согласно данным измеряют угловые перемещения зеркала в диапазоне углов до ±15° с дискретностью отсчета 0,1".

Оптические преобразователи лазерного излучения

4.24. Пояснить принцип действия телескопической системы, представленной на рис. 4.17
.

Состоит из двух элементов - объектива и окуляра. Задний фокус F об объектива совпадает с передним фокусом F ок окуляра. В лазерных сканирующих устройствах телескопические системы рассматриваемого типа уменьшают расходимость лазерного луча и увеличивают его диаметр.

4.25. Рассмотреть принципы построения и действия объективов, применяемых в лазерных сканирующих устройствах.

Объективы, фокусирующие лазерное излучение, эффективно используются в сканирующих устройствах . Типы таких объективов разнообразны (рис. 4.18).

Одиночная положительная линза (рис. 4.18, а); однако в простой линзовой системе существуют различные аберрации - погрешности восприятия, преобразования, фокусировки оптического излучения. Аберрации исправляются и корректируются в сложных оптических системах. Изображение более высокого качества дают двух- и многолинзовые объективы, например трехлинзовый объектив (рис. 4.18, б).

Роль объектива может выполнять одиночное сферическое зеркало, а также зеркало с параболической или гиперболической поверхностью (рис. 4.18, в).

Широко используются более сложные объективы, например двухзеркальные, содержащие основное вогнутое зеркало с отверстием в центре и контррефлектор, который может быть плоским, вогнутым, выпуклым (в том числе и с асферической поверхностью). По этому принципу (с контррефлектором) построен телескоп Кассегрена (рис. 4.18, г).

Высоким качеством передачи и фокусировки оптического (лазерного) излучения обладают зеркально-линзовые объективы: система Шмидта (рис. 4.18, д), система Максутова (рис. 4.18, е), система апо-хроматического анастигмата (рис. 4.18, ж).

4.26. Пояснить назначение и действие конденсора в преобразователях оптического (лазерного) излучения .

(специальная линза) собирает оптические лучи, попадающие в объектив сканирующего устройства, на фоточувствительную поверхность приемника излучения. Оптическая система (рис. 4.19, а
), состоящая только из объектива (без конденсора), фокусирует излучение, смещенное от оптической оси (показанное на рисунке двойными стрелками), за пределами приемника излучения. При введении конденсора (вторая линза на рис. 4.19, б
) это излучение фокусируется на приемнике.

Четкими фокусирующими свойствами обладает иммерсионный конденсор - полусферическая линза, установленная вплотную к фоточувствительному приемнику (рис. 4.19, в
).

4.27. Представить вариант оптической системы для концентрации лазерного луча на фоточувствительную площадь малого размера.

Такой вариант системы представлен на рис. 4.20
. Без фокусирующих элементов лазерное излучение (при угле расхождения, равном 2φ) создает оптическое пятно диаметром D на поверхности, которая отстоит от лазера на расстоянии L. При введении положительной линзы этот размер уменьшается до размера d << D. Очевидно, однако, что достаточное уменьшение оптического пятна можно получить лишь с использованием короткофокусной линзы; тогда размер пятна d = f"×2φ.

4.28. Пояснить принципы построения и действия зеркальной (рис. 4.21, а) и линзовой (рис. 4.21, б) телескопических систем, преобразующих пучки лазерного излучения.

В телескопической системе (рис. 4.21, а) формирование направленных пучков с угловой расходимостью, меньшей, чем у пучка, выходящего из лазера, достигается введением выпуклого и вогнутого зеркал. В системе Галилея (рис. 4.21, б) в качестве объектива применяется отрицательная линза.

4.29. Рассмотреть (выделить, классифицировать, исследовать) аберрации оптических систем.

Согласно аберрации оптических систем (от лат. aberratio - уклонение) рассматриваются как погрешности изображений, создаваемых такими системами. Аберрации проявляются в том, что оптические изображения в ряде случаев не вполне отчетливы, не точно соответствуют объекту или оказываются окрашенными. Наиболее значительны следующие виды аберраций.

Недостаток оптического изображения, заключающийся в том, что световые лучи, прошедшие вблизи оптической оси, и лучи, прошедшие через отдаленные от оси части оптической системы (например, линзы), не собираются в одну точку. Сферическая аберрация может быть почти полностью устранена применением специально рассчитанных комбинаций линз.

Другим видом аберрации является кома - недостаток оптического изображения (изображение точки имеет вид продолговатого несимметричного пятна), возникающий при косом прохождении световых лучей через оптическую систему. В случае простой линзы размеры пятна пропорциональны квадрату радиуса линзы и углу наклона светового пучка по отношению к оси.

При больших углах наклона пучка к оси существенна аберрация, называемая астигматизмом . Если при прохождении оптической системы сферическая световая волна деформируется и перестает быть сферической, то пучок лучей становится сложным: лучи пересекаются не в одной точке, а в двух взаимно перпендикулярных отрезках прямой линии, расположенных на некотором расстоянии друг от друга. Такой пучок называется астигматическим, а само явление - астигматизмом.

Аберрация оптической системы, называемая дисторсией , характеризуется неодинаковостью линейного увеличения в пределах всего поля изображения и приводит к нарушению геометрического подобия между объектом и его изображением.

Оптические системы могут обладать сразу несколькими видами аберраций. Исправление аберраций в сложных оптических системах производится надлежащим сочетанием линз и представляет трудную задачу. Те или иные виды аберраций обычно устраняются в соответствии с назначением оптической системы. Перечисленные аберрации оптических систем называются геометрическими.

Несовершенства изображения в оптических системах связаны также с волновой природой света. Они возникают из-за дифракции света на диафрагмах, оправах линз и т.п. Влияние дифракции обычно невелико по сравнению с другими аберрациями оптических систем. Существует еще хроматическая аберрация, связанная с зависимостью показателя преломления от длины волны света, в результате чего при немонохроматическом свете изображения оказываются окрашенными.

4.30. Рассмотреть оптические схемы и технические особенности применения мощных лазеров в технологических операциях обработки твердых материалов (металлов, сплавов, керамики, полупроводниковых кристаллов, алмазов).

Характерной областью такого применения лазеров может служить сверление отверстий мощным лазерным лучом. Эффективной оказывается многоимпульсная лазерная прошивка и обработка отверстий. В таких технологических операциях практикуются специальные оптические схемы фокусировки лазерного излучения, представленные на рис. 4.22
. На этих рисунках используются одинаковые цифровые обозначения: 1 - лазер; 2 - лазерное излучение; 3 - сферические зеркала; 4 - коническая линза; 5 - сферическая линза; 6 - обрабатываемая деталь.

В оптическом варианте (рис. 4.22, а
) фокусируемый лазерный пучок имеет кольцевое поперечное сечение на поверхности детали 6, которое находится на определенном расстоянии от фокальной плоскости. При этом лазерное излучение фокусируется в виде полого конуса.

Использование конической линзы (аксикона) по оптической схеме (рис. 4.22, б
) позволяет сформировать лазерный пучок в фокальной плоскости в виде кольца. Таким техническим путем можно получить отверстия относительно большого радиуса.

Оптическое соединение полупроводниковых лазеров и волоконных световодов

4.31. Пояснить назначение и особенности конструкции волоконных световодов.

Широко и эффективно используются для высокоскоростной помехоустойчивой передачи оптических информационных сигналов на большие расстояния. Самостоятельную «нишу» занимают волоконно-оптические датчики, обладающие уникальными функциональными и техническими возможностями. Для ввода оптического излучения в волоконные световоды успешно применяются полупроводниковые лазеры.

Волоконным световодом служит тонкая гибкая цилиндрическая нить с двухслойной оптической структурой, содержащей внутреннюю жилу (сердцевину) и оболочку (рис. 4.23
). Коэффициент преломления n 1 сердцевины превышает коэффициент преломления n 2 оболочки, что при определенных условиях обеспечивает полное внутреннее отражение света, введенного в сердцевину с торца волокна. Таким образом, введенный свет не выходит за границы внутренней жилы и без существенных потерь распространяется только внутри волоконного световода.

В двухслойном кварцевом волокне внутреннюю световедущую жилу изготавливают из чистого кварца, а оболочкой служит слой кварца, легированного бромом или германием. Кроме кварцевых волоконных световодов изготавливаются многокомпонентные стеклянные или полимерные оптические волокна.

4.32. Для волоконного световода представить количественные оценки числовой апертуры и условий, при которых происходит полное внутреннее отражение введенного оптического излучения.

Апертурой является действующее отверстие оптической системы, определяемое размерами линз или диафрагм. Числовая апертура NA (Numerical Aperture) равна n 0 sinθ max , где n 0 - показатель преломления среды, в которой находится объект, а угол θ max ограничивается размерами линзы (диафрагмы).

Используя такой подход для волоконного световода (рис. 4.24
), учитываем в первую очередь, что на поверхности ввода излучения (в узле а) обеспечивается равенство числовых апертур:

Полное внутреннее отражение (в узле b) достигается, если

Поскольку φ 0 + Ψ 0 = π/2, получаем с учетом и искомое соотношение для числовой апертуры волоконного световода:

В реальных световодах коэффициенты преломления n 1 и n 2 различаются лишь на единицы и даже доли процентов: n 1 ×n 2 . Поэтому для числовой апертуры волоконного световода корректно использовать соотношение

где относительная разность коэффициентов преломления Δ = (n 1 - n 2)/n 1 . Учитывая, что для достаточно чистого кварца коэффициент n 1 = 1,46, получаем согласно

NA = 0,206 при Δ = 1%;

NА = 0,065 при Δ = 0,1%.

Важным самостоятельным параметром световода является максимально допустимый угол

Лишь при углах θ×θ max гарантируется полное внутренне отражение оптического излучения в волоконном световоде.

Если оптическое излучение поступает в световод из воздушной среды, то коэффициент преломления n 0 = 1; в этом случае

Согласно θ max = 11,9° при D = 1%; θ max = 3,7° при Δ = 0,1%.

Возможные варианты распространения оптического излучения в волоконном световоде представлены на рис. 4.25
. Луч 1 поступает в световод под максимально допустимым углом θ max (на грани полного внутреннего отражения). Луч 2 вводится под углом θ<θ max , не выходит за пределы сердцевины и продвигается вглубь световода без заметных потерь. Угол ввода луча 3 недопустимо велик: θ>θ max ; поэтому излучение 3 преломляется, частично выходит за границы сердцевины (в оболочку) и быстро ослабевает в канале светопередачи.

4.33. Пояснить и сравнить механизмы распространения оптического излучения в одномодовых и многомодовых волоконных световодах.

Моды (электромагнитные колебания определенного вида) возбуждаются, генерируются и распространяются в различных сложных колебательных системах, включая объемные диэлектрические (цилиндрические и прямоугольные) резонаторы, радиоволноводы, открытые оптические (лазерные) резонаторы.

Оптическое излучение, которое вводится в торец волоконного световода под углом θ<θ max , испытывает в дальнейшем многократное полное отражение, формируется и распространяется в сердцевине световода в виде электромагнитных (оптических) колебаний строго определенного вида - световодной (направляемой, каналируемой) моды. В волоконных световодах свойства, характеристики, маршруты распространения оптических колебаний (мод) четко прогнозируются: электромагнитное поле в вертикальном сечении световода формируется и фиксируется как стоячая волна, световые колебания горизонтально поляризованы и распространяются с определенной и стабильной частотой.

Распространение получили многомодовые волоконные световоды с резким (ступенчатым) и плавным (градиентным) распределением коэффициента преломления n. Оптические волокна в таких световодах имеют достаточно большой диаметр сердцевины (50-100 мкм) и значительную (~1%) относительную разность коэффициентов преломления, что дает возможность вводить оптическое излучение в широком диапазоне и упрощает согласование световода с источником излучения.

В многомодовом ступенчатом оптическом волокне (рис. 4.26, а
) коэффициент преломления n на границе сердцевины и оболочки резко изменяется от n 1 до n 2 . В такой структуре световая волна полностью отражается на четко выраженной границе слоев и распространение волны происходит по ломаным траекториям. При этом, однако, в световод под разными углами поступает и распространяется множество (десятки и даже сотни) различных световых волн - мод. На рис. 4.26
, а показано распространение в ступенчатом многомодовом световоде трех световых волн различного порядка.

В градиентном оптическом волокне (рис. 4.26, б
) коэффициент преломления n уменьшается от максимального значения n 1 в центре сердцевины к границе с оболочкой плавно (по квадратичному закону). В такой структуре оптические лучи, поступающие в световод под различными углами θ, отражаются на различных расстояниях от горизонтальной оси световода. При этом лучи, распространяющиеся вблизи оси, проходят за один цикл (период колебаний) меньший путь по сравнению с лучами, достигающими границы с оболочкой. Важно, однако, учитывать, что скорость света в среде обратно пропорциональна коэффициенту преломления этой среды; поэтому лучи, проходящие в градиентном волокне различные пути, распространяются вдоль оси волокна с примерно одинаковой скоростью. Таким образом, оптические лучи самофокусируются в единый световой поток, причем распространение света идет по плавным траекториям. Световоды с градиентными волокнами называют также селфоками (от сочетания английских слов self - сам и focus - фокус).

Диаметр сердцевины одного оптического волокна не превышает 5-100 мкм, а относительная разность D коэффициентов преломления составляет 0,2-0,3%. В таких оптических волокнах распространяется только одна мода (рис. 4.26, в
).

4.34. Оценить дисперсию оптического излучения в многомодовых волоконных световодах.

В многомодовом световоде оптические волны различного порядка проходят неодинаковые пути за разное время. Поэтому в таком световоде четко проявляется дисперсия (рассеяние) излучения, которая, в частности, приводит к существенному увеличению длительности (расширению) оптического сигнала на выходе световода.

Этот эффект наглядно иллюстрируется в левой части рис. 4.26
, где представлены импульсы света мощностью Р на входе (в момент t 1) и выходе (в момент t 2) световода. Наиболее значительной оказывается дисперсия в многомодовых ступенчатых световодах (рис. 4.26, а
). В многомодовых градиентных световодах дисперсия (рис. 4.26, б
) относительно невелика. В одномодовых световодах дисперсия отсутствует (не возникает).

Механизм дисперсии оптического излучения четко проявляется в ступенчатом многомодовом световоде. Расчет дисперсии в этом случае проведем с использованием несложного графика (рис. 4.27
), показывающего разницу маршрутов, которые проходят световые лучи в двух крайних вариантах:

    1) если излучение вводится перпендикулярно торцу световода (θ = φ = 0), то луч света (соответствующий моде самого низкого порядка) проходит минимальный путь ас, равный l 1 ;

    2) если излучение вводится под критическим углом θ = θ max , то угол распространения тоже максимален: φ = φ 0 , а луч света (соответствующий моде самого высокого порядка) проходит наибольший путь ab, равный l 2 . Очевидно, что l 2 = l 1 /cosφ.

Оба указанных маршрута лучи света проходят со скоростью c/n 1 , где с - скорость света в вакууме, а n 1 - коэффициент преломления сердцевины световода. Таким образом, уже в начальной стадии возникает дисперсия излучения:

Используя соотношения , (4.7а) и учитывая, что Δ<< 1, несложно преобразовать соотношение к виду

Полученную формулу можно распространить на весь волоконный световод длиной L. Тогда искомая дисперсия оптического излучения в ступенчатом многомодовом световоде определяется формулой

Например, для световода длиной L = 1 км при n 1 = 1,46 и Δ = 0,01 с учетом с = 3 ×10 5 км/с дисперсия излучения ΔT = 50 нс. Очевидно, что такой световод не может успешно действовать в оптоэлектронной технике наносекундного диапазона, но вполне пригоден для передачи микросекундных оптических сигналов.

Дисперсия оптического излучения в градиентном многомодовом световоде существенно меньше, чем в ступенчатом многомодовом волокне. Анализ показывает, что такая дисперсия оценивается соотношением

Сравнивая и , получаем, что градиентное многомодовое волокно превосходит по быстродействию ступенчатое многомодовое волокно в 2/Δ раз. При Δ = 0,01 такой выигрыш по быстродействию (в 200 раз) весьма ощутим.

4.35. Рассмотреть причины ослабления оптического излучения, оценить потери мощности оптических сигналов в кварцевых волоконных световодах.

Оптическое излучение, распространяясь в волоконном световоде, постепенно ослабевает из-за целого ряда причин и факторов.

Существенным является поглощение и рассеяние в середине световода, обусловленное параметрами и свойствами материала внутренней кварцевой жилы. В их числе потери, присущие материалу и принципиально неустранимые: собственное поглощение в материале световода, рэлеевское рассеяние, вызванное флуктуациями плотности или состава материала. Заметным оказывается примесное поглощение, связанное с действием примесей (гидроксильной группы ОН, ионов металлов группы медь - хром), поглощающих оптическое излучение в видимой и ближней инфракрасной областях спектра.

Потери увеличивают рассеяние излучения в световодной структуре, вызванное геометрическими неоднородностями поверхности раздела сердцевина - оболочка и технологическим разбросом параметров световода: сечения (формы, размеров) сердцевины, пространственного распределения коэффициентов преломления.

Возникают потери на внешнее излучение, вызванные, в частности, микроизгибами световода в местах контакта с защитными оболочками и уплотняющими элементами кабеля.

Для количественной оценки оптических потерь в волоконном световоде вводится параметр

определяющий удельное затухание оптического сигнала (в дБ/км). В соотношении сравниваются мощности оптического излучения на входе P вх и выходе (P вых) световода длиной L (км).

Энергетические потери в волоконном световоде существенно зависят от спектральных характеристик (длины волны) излучения. Согласно зависимость В = φ(λ) для кварцевых световодов имеет четко выраженные минимумы (рис. 4.28
).

По данным , при λ = 0,8 мкм потери составляют 1,5 дБ/км (40% на 1 км световода); при λ = 1,55 мкм удельное затухание В = 0,15 дБ/км (3,5% на 1 км световода).

4.36. Обосновать условия согласования полупроводниковых лазеров и волоконных световодов.

При разработке методов и средств оптического соединения полупроводниковых лазеров и волоконных световодов следует учитывать ряд существенных факторов. Размеры активной (излучающей) зоны полупроводникового лазера в ортогональных направлениях неодинаковы. Весьма узкий (0,1-0,2 мкм) вертикальный слой существенно меньше длины волны излучения, что приводит к резкому увеличению расходимости пучка лазерного излучения в вертикальном направлении. Вместе с тем в горизонтальном направлении активный слой полупроводникового лазера занимает несколько микрометров; поэтому расходимость пучка света в указанном направлении относительно невелика. В результате пучок света, генерируемый полупроводниковым лазером, имеет форму сильно вытянутого эллипса (см. рис. 2.25
). К тому же свет излучается полупроводниковым лазером в виде расходящегося пучка.

Диаметр сердцевины (10-100 мкм) волоконного световода существенно превышает размеры излучающей зоны полупроводникового лазера. Кроме того, жестко ограничен сверху угол ввода излучения в световод, при котором гарантируются полное внутреннее отражение и минимальные потери света в оптическом волокне.

Вместе с тем условия оптического согласования:

    совмещение оптических осей (по положению и углу наклона);

    согласование по распределению интенсивности (размеру пучка) и по числовой апертуре NA - следует выполнять и для полупроводникового лазера, и для волоконного световода.

Предполагается, что в этих случаях вспомогательные средства (главным образом линзы) не используются. Технические варианты соединения представлены на рис. 4.29.

В простейшем варианте (рис. 4.29, а) совмещаются оптические оси полупроводникового лазера и волоконного световода. Однако угол расходимости пучка лазерного излучения в вертикальном направлении (30-40° и более) заметно превышает максимально допустимый угол ввода излучения в световод (10-20° и менее). Поэтому в оптическое волокно поступает лишь часть излучения лазера, а потери света достигают 7 дБ (80%).

В варианте (рис. 4.29, б) конец оптического волокна искусственно сужается, а поверхность торца формируется в виде микролинзы. При этом потери света сокращаются до 5,8 дБ (65%). В аналогичном техническом решении (рис. 4.29, в) микролинза на конце световода создается локальным травлением (пунктиром на рисунке показана часть световода, удаленная травлением). В этом случае потери вводимого излучения уменьшаются до 3 дБ (50%).

4.38. Представить и иллюстрировать варианты применения фокусирующих линз для оптического согласования полупроводникового лазера и волоконного световода.

Для оптимального оптического согласования полупроводниковых лазеров и волоконных световодов используются линзы цилиндрические, сферические, стержневые (градиентные).

(рис. 4.30, а) позволяет преобразовать сильно вытянутый эллипс пучка лазерного излучения и придать ему на входе в волоконный световод почти круглое сечение. При этом эффективность ввода лазерного излучения в многомодовый световод достигает 30%.

(рис. 4.30, б) обеспечивает преобразование расходящихся лучей лазерного излучения в параллельный пучок света значительного диаметра, что заметно облегчает дальнейшее преобразование и оптимальный ввод оптического излучения. Эффективным элементом такого преобразования и ввода является стержневая (градиентная) линза, которая фокусирует излучение в пучок, сходящийся под необходимым (относительно небольшим) углом с числовой апертурой волоконного световода.

Стержневые линзы имеют цилиндрическую форму с плоскими торцами для ввода оптического излучения. Главное, однако, в том, что в стержневой (градиентной) линзе, как и в градиентном оптическом волокне (рис. 4.26, б
), коэффициент преломления не остается постоянным, а уменьшается пропорционально квадрату расстояния от центральной оси (т.е. квадрату радиуса). Тем не менее в отличие от градиентного световода градиентная линза имеет большой диаметр (1-2 мм) и не имеет оболочки.

На рис. 4.31
, а показаны траектории светового пучка в градиентной линзе. Вводится параллельный пучок, который далее в объеме линзы, как и в градиентном волокне, изменяется (и продвигается) по синусоидальной траектории. Такая траектория распространения света имеет период (шаг)

где g - параметр, определяющий распределение показателя преломления(и, как следствие, степень фокусировки) линзы.

Создавая (вырезая) градиентный стержень определенной длины L, несложно четко сформировать определенные фокусирующие свойства линзы. Если L = L π /2, то согласно рис. 4.21, а можно падающий параллельный пучок света сфокусировать в объеме линзы, а затем вывести его вновь в виде параллельного пучка.

) в активной зоне лазерного диода (ЛД). При небольших уровнях тока I лд полупроводниковый лазер действует как светодиод и генерирует некогерентное оптическое излучение небольшой мощности. При достижении порогового уровня тока I лд оптические колебания в лазерном резонаторе генерируются, становятся когерентными; резко возрастает мощность излучения P изл. Однако генерируемая мощность P изл и в этом режиме пропорциональна уровню тока I лд. Таким образом, возможности изменения (переключения, модуляции) мощности излучения полупроводникового лазера однозначно связаны с целенаправленным изменением инжекционного тока I лд.

В импульсном режиме действия лазерного диода его рабочая точка М (рис. 4.32, а
) фиксируется на пологом участке ватт-амперной характеристики P изл = φ(I лд) в предпороговой области лазера. Резкое увеличение тока I лд переводит рабочую точку на крутой участок характеристики (например, в положение N), что гарантирует возбуждение и интенсивный рост мощности лазерных колебаний. Спад тока I лд и перевод рабочей точки лазера в исходное положение М обеспечивают срыв лазерных колебаний и резкое снижение выходной мощности лазерного излучения.

В аналоговом режиме модуляции лазерных колебаний рабочая точка Q фиксируется на крутом участке ватт-амперной характеристики (рис. 4.32, б
). Изменение тока I лд под действием внешнего информационного сигнала приводит к пропорциональному изменению выходной мощности полупроводникового лазера.

4.40. Пояснить схему построения и принцип действия транзисторного каскада (рис. 4.33
) для управления инжекционным током полупроводникового лазера.

Намеченные (в предыдущем п. 4.39) приемы управления инжекционным током полупроводникового лазера удается четко реализовать, используя каскад (переключатель тока, дифференциальный усилитель), построенный на двух биполярных транзисторах (рис. 4.33, а
). Введены источники постоянных токов I п1 и I п2 . Ток I п1 неизменно протекает по цепи с лазерным диодом ЛД, ток I п2 питает эмиттерные цепи транзисторов T 1 , T 2 и перераспределяется в зависимости от уровня управляющего напряжения e упр

Если e упр > 0,3 В (и существенно выше нулевого потенциала базы транзистора T 2), то транзистор T 1 открыт и проводит ток I п2 , а транзистор T 2 выключен. В этом состоянии лазерный диод ЛД питается только током I п1: I лдmin = I п1 (рис. 4.33, б
).

При e упр < -0,3 В выключен транзистор T 1 , ток I п2 переключается в эмиттерную цепь транзистора T 2 и лазерный диод возбуждается максимальным током I лдmax = I п1 + I п2 . При этом учитывается, что для биполярных транзисторов высокого качества коллекторный (I к) и эмиттерный ( 1. Отметим также, что передаточная характеристика I лд = e упр построена (рис. 4.33, б
) для транзисторов T 1 и T 2 с идентичными вольт-амперными характеристиками (ВАХ) эмиттерных р-n-переходов; поэтому при e упр = 0 ток Iлд = I п1 + 0,5I п2 . Естественный технологический разброс ВАХ приводит к небольшому сдвигу передаточной характеристики (рис. 4.33, б
) по шкале напряжений.

Очевидно, что транзисторный каскад (рис. 4.33, а
) можно использовать как переключатель тока I п2 для цифрового управления лазерным диодом, а также как дифференциальный усилитель сигналов напряжения e упр (t) для аналоговой модуляции лазерного излучения.

4.41. Рассмотреть технические возможности применения полевых транзисторов для управления полупроводниковыми лазерами.

Полевые транзисторы (рис. 4.34, а
) по выходной (стоковой) цепи являются в пентодной области ВАХ I c = φ(U си) параметрическими стабилизаторами тока (рис. 4.34, в) и успешно применяются для четкого, строго регламентированного управления полупроводниковыми лазерами. Ток стока I c эффективно изменяется по затвору сигналами напряжения согласно передаточной характеристике I c = Ψ(U зи), представленной на рис. 4.34, б
.

Рабочая точка М каскада (рис. 4.34, а
) при определенном входном напряжении e упр получена (рис. 4.34, в
) стандартным графоаналитическим решением системы

При таком построении лазерный диод является нелинейной статической нагрузкой полевого транзистора (по цепи стока).

Каскады на полевых транзисторах можно с равным успехом использовать для цифрового и аналогового управления полупроводниковыми лазерами. Удобно оказывается параллельное соединение двух полевых транзисторов по схеме (рис. 4.35
). Один из транзисторов (в данном случае T 2) определяет исходный режим лазерного диода в предпороговой или регенеративной области функционирования. Переключение или модуляцию лазерного излучения осуществляет транзистор T 1 , управляемый аналоговыми или цифровыми информационными сигналами e упр (t).

4.42. Рассмотреть принципы и схемотехнику построения ретрансляторов оптических сигналов (рис. 4.36
).

В волоконно-оптической линии связи (ВОЛС) значительной длины оптические сигналы, первоначально формируемые лазерными диодами, существенно ослабевают. Поэтому обычно ВОЛС составляется из однотипных фрагментов, соединенных последовательно. На стыках смежных фрагментов ВОЛС действуют усилители-ретрансляторы, восстанавливающие мощность оптических сигналов.

В технически несложном варианте, представленном на рис. 4.36, а
, приемником оптических сигналов, формируемых на выходе фрагментов ВОЛС и поступающих на вход ретранслятора, служит малоинерционный фотодиод с р-i-n-структурой. Фототок I Φ освещаемого фотодиода ФД реагирует на изменения падающего (входного) потока света Ф: I Φ (t) ~ Φ(t) - и изменяет напряжение U 3 на затворе полевого транзистора: U 3 (t) = I Φ (t)R 1 . Сигнал напряжения U 3 (t) модулирует ток стока I c (t) полевого транзистора, а следовательно, ток возбуждения I лд (t) лазерного диода. Выходное излучение Φ вых (t) лазера «следит» за изменениями входного потока света Φ вх (t) без значительных искажений, но существенно превосходит входной оптический сигнал по мощности.

Дополнительными функциональными и техническими возможностями обладает ретранслятор оптических сигналов, построенный по схеме (рис. 4.36, б
). Лазерный диод ЛД постоянно возбужден током I п и действует как генератор оптических сигналов значительной мощности. Выходной поток света Φ вых (t) модулируется током стока I c1 (t) полевого транзистора T 1 . Входное оптическое излучение Φ вх (t) воздействует на полевой транзистор T 2 и изменяет фотоэдс между стоком и истоком (затвором) этого транзистора, которая управляет по затвору током стока I c1 транзистора T 1 и током возбуждения I лд лазерного диода.

Такое управление возможно, если полевой транзистор T 3 выключен (при низком уровне управляющего напряжения e упр). Включение транзистора T 3 напряжением e упр более высокого уровня замыкает управляющую цепь транзистора T 1 и исключает воздействие входного оптического потока Φ вх (t) на выходное излучение Φ вых (t) лазерного диода.

4.43. Пояснить задачи и технику электронной стабилизации тока возбуждения полупроводникового лазера.

Технические задачи стабилизации электрического режима и оптических характеристик полупроводниковых лазеров возникают и существенны в нескольких случаях. Целесообразно четко определить и жестко фиксировать ток постоянного электрического питания лазерного диода, что необходимо и в предпороговой области действия лазера, и в процессе непрерывной генерации лазерных колебаний.

Важно также стабилизировать мощность оптического излучения полупроводникового лазера. По мере возбуждения такого лазера мощность лазерного излучения непрерывно нарастает, но в итоге должна фиксироваться на определенном, четко предсказуемом уровне. При длительном функционировании полупроводникового лазера с инжекционной накачкой большим током выходная мощность лазера постепенно снижается (прибор «деградирует»). Необходимо стабилизировать интенсивность излучения полупроводникового лазера, нейтрализуя процесс деградации.

Эффективной оказывается электронная стабилизация тока возбуждения лазера. При неизменном (стабилизированном) токе I лд четко определяется и надежно поддерживается (сохраняется) электрический режим лазерного диода в предпороговой области (при небольших уровнях тока I лд) или в режиме генерации когерентных колебаний (при значительном токе I лд).

Электронную стабилизацию тока возбуждения полупроводникового лазера несложно осуществить по стандартной схеме, представленной на рис. 4.37
. Постоянный уровень тока I лд обеспечивают операционный усилитель ОУ, источник неизменного (эталонного) напряжения E 0 , усилитель тока на биполярном транзисторе Т, резистор R 2 . Вспомогательную роль играет токоограничивающий резистор R 1 . Учитывается, что дифференциальная разность входных потенциалов ОУ при значительном коэффициенте усиления k KO весьма невелика: E 0 - U a ® 0. Поэтому потенциал U a жестко фиксирован на уровне E 0 , а ток возбуждения лазерного диода I лд = E 0 /R 2 строго определен и поддерживается неизменным (стабилизированным).

В рассматриваемой схеме обеспечивается глубокая отрицательная обратная связь. Если ток I лд лазерного диода нестабилен и, например, возрастает, то увеличиваются падение напряжения на резисторе R 2 и потенциал U a инверсного входа ОУ. Поэтому выходное напряжение ОУ снижается и через транзистор Т воздействует на лазерный диод, уменьшая (по существу стабилизируя) ток его возбуждения.

В естественном варианте с конкретным (ограниченным) значением коэффициента усиления k KO уровень тока возбуждения лазерного диода в схеме (рис. 4.37
)

зависит от падения напряжения на лазере (ΔU лд.пр) и эмиттерном р-n-переходе транзистора (ΔU бэ.пр), смещенных в прямом направлении, а также от сопротивления резистора R 1 и коэффициента передачи А транзистора. Влияние этих факторов оказывается незначительным при k KO >> 1 и А 1, что, безусловно, выполняется для ОУ и биполярных транзисторов высокого качества.

4.44. Рассмотреть принцип и схему стабилизации по оптическому каналу тока возбуждения полупроводникового лазера.

Возможные изменения оптического излучения полупроводниковых лазеров четко отслеживают малоинерционные фотоприемники, например фотодиоды с p-i-n-структурой. Введение такого фотоприемника в цепь отрицательной обратной связи, охватывающей лазер, позволяет стабилизировать характеристики лазерного излучателя по оптическим каналам.

Базовая схема оптической стабилизации, представленная на рис. 4.38
, содержит усилитель тока УТ, который управляется сигналами входного тока I упр и питает выходным током I лд (t) лазерный диод ЛД. Фотодиод ФД реагирует на оптическое излучение полупроводникового лазера и создает фототок I Φ (t), действующий как сигнал отрицательной оптической обратной связи.

Согласно ток возбуждения I лд лазера стабилизирован, так как не зависит от коэффициента усиления по току k 1 , а в основном определяется коэффициентами преобразования k 2 и k 3 . В свою очередь, поток Φ лд согласно непосредственно не связан с коэффициентом преобразования k 2 , что существенно и полезно при длительном возбуждении полупроводникового лазера и постепенной деградации его оптического излучения (которая приводит к заметному уменьшению коэффициента k 2 при неизменном токе I лд).

4.45. Рассмотреть схему и принцип действия устройства (рис. 4.39
) с оптической обратной связью. Выделить компоненты схемы, существенно ограничивающие быстродействие устройства.

Детальные разработки базовой идеи (рис. 4.38
), представленные в статье , предполагают активное использование операционных усилителей (ОУ) и транзисторных каскадов.

В несложной схеме (рис. 4.39
) ОУ управляется цифровыми сигналами e упр (t) отрицательной полярности по инверсному входу; при этом небольшой отрицательный уровень сигнала - e упр(0) соответствует логическому 0, а относительно большой (более отрицательный) уровень - e упр(1) - логической 1. ОУ воздействует по базовой цепи на транзисторный каскад с токоограничивающим резистором R 2 . Однако определяющим является канал обратной связи, в котором малоинерционный фотодиод реагирует на оптическое излучение полупроводникового лазера и создает фототок I Φ = k 1 I лд; здесь k 1 - коэффициент передачи по току оптической пары лазер - фотоприемник. Фотодиод шунтирован резистором R 1 ; поэтому ОУ реагирует по прямому (неинвертирующему) входу на потенциал U a = -I Φ R 1 .

В установившемся режиме дифференциальная разность входных потенциалов ОУ U a - e упр 0; таким образом, действующий (возможный) уровень фототока жестко фиксирован: I Φ = e упр /R 1 . Строго определен в такой схеме уровень тока, возбуждающего лазер: I лд = I Φ /k 1 = e упр /(k 1 R 1 .). С учетом дискретных значений цифрового сигнала e упр (t) ток возбуждения полупроводникового лазера в схеме (рис. 4.39
) имеет лишь два четких значения: I лд(0) = e упр(0) /(k 1 R 1 .) и I лд(1) = e упр(1) /(k 1 R 1 .).

Если исходным является управляющий сигнал - e упр(0) , то ток возбуждения I лд(0) невелик и лазер фиксируется в предпороговой области (на грани возбуждения). При резком снижении сигнала e упр (t) до уровня - e упр(1) существенно (до уровня I лд(1)) возрастает ток I лд и полупроводниковый лазер, активно возбуждаясь, генерирует когерентное оптическое излучение.

Таким образом, в рассматриваемой схеме (рис. 4.39
) обратная связь по оптическому каналу задает электрический режим полупроводникового лазера, ограничивает и стабилизирует мощность лазерного излучения.

Представленное устройство можно успешно использовать для цифровой и (или) аналоговой модуляции оптического излучения сигналами e упр (t). Важно, однако, учитывать, что ОУ в таком модуляторе действует одновременно в канале прямой электрической связи, реагируя на модулирующие сигналы e упр (t), и в цепи обратной оптической связи, стабилизируя ток возбуждения и выходную мощность полупроводникового лазера. Частотные возможности ОУ относительно невелики (не выходят за пределы 10-50 МГц), что существенно ограничивает быстродействие лазерного модулятора (рис. 4.39
).

4.46. Рассмотреть схемотехнику и принцип действия устройства (рис. 4.40
). Пояснить техническую роль в схеме переключателя тока, построенного на транзисторах T 2 , T 3 , и операционного усилителя ОУ.

Устройство управления лазером, приведенное на рис. 4.40
, дополнено высокоскоростным транзисторным переключателем тока I п. Этот переключатель реагирует на входные сигналы e упр (t) и непосредственно (по коллекторной цепи транзистора T 3) управляет током возбуждения I лд лазерного диода. При этом ОУ по-прежнему обеспечивает стабилизацию инжекционного тока и выходной мощности лазера в установившемся режиме, но на воздействие импульсных сигналов e упр (t) реагирует замедленно (в финале переходных процессов переключения). Таким образом, транзисторный переключатель тока в схеме (рис. 4.40
) осуществляет высокоскоростное управление полупроводниковым лазером, а более длительные (низкочастотные) процессы стабилизации выполняет ОУ.

Если лазерный модулятор непрерывно действует в режиме весьма высокой импульсной загрузки, то ОУ не успевает «следить» за изменениями тока возбуждения I лд (t) и стабилизирует усредненную мощность лазерного излучения, которая при цифровом управлении существенно превышает минимальную мощность, соответствующую сигналу e упр(0) , но явно не достигает максимальной мощности, которую должны обеспечивать уровни e упр(1) .

4.47. Пояснить схемотехнические особенности устройства (рис. 4.41
). Выделить цепи отрицательной обратной связи по электрическим и оптическим каналам.

В устройстве, представленном на рис. 4.41
, ОУ полностью освобожден от высокоскоростных операций, связанных с воздействием модулирующих сигналов e упр (t). Потенциал инверсного входа ОУ фиксирован на неизменном уровне - E 0 .

Входные импульсные сигналы e упр (t) управляют лазером по коллекторной цепи транзистора T 3 . Особенностью схемы (рис. 4.41
) является введение электрической обратной связи по коллектору транзистора T 2 ; при этом коллекторный ток I k2 непосредственно влияет на потенциал обратной связи U a = (I k2 - I Φ)T 2 и корректирует стабилизирующее действие оптического канала такой связи. Очевидно, однако, что и в этом устройстве при интенсивной импульсной загрузке обратная связь стабилизирует усредненное значение выходной мощности лазерного излучения.

СКАНИРУЮЩИЕ ОПТИКО - ЭЛЕКТРОННЫЕ СЪЁМОЧНЫЕ СИСТЕМЫ (СКАНЕРЫ)

Сканирующие съёмочные системы (сканеры) отличаются от других прежде всего принципом построения изображения, которое строится построчным сканированием (просматриванием) местности.

В сканирующих системах применяют различные типы приёмников электромагнитного излучения: тепловые (теплоэлектрические) и фотонные (фотоэлектрические). Тепловые работают на основе преобразования тепловой энергии в электрический сигнал, в фотонных системах уровень сигнала определяется количеством поглощённых фотонов. Наибольшее применение получили сканеры, приёмниками в которых служат линейки ПЗС (приборы с зарядной смесью). Различные типы сенсоров имеют различную спектральную чувствительность и охватывают спектральный интервал от видимой зоны до дальней инфракрасной зоны. Выбор приёмника излучения и его спектральной чувствительности зависит от спектрального интервала съёмки.

Конструктивно сканер состоит из оптической системы, фотоэлектронных преобразователей, устройства приёма и регистрации изображения. С помощью сканеров формируется изображение, состоящее из множества отдельных, последовательно получаемых элементов изображения - пикселей в пределах полос (строк, сканов). Размер пиксела определяет детальность (разрешение на местности) изображения.

Сканирование местности осуществляется в одном направлении за счёт движения самолёта (спутника) вперёд, а в другом (перпендикулярном линии полёта) - за счёт вращения или колебания призмы (зеркала). Колебательное перемещение призмы (зеркала) в сочетании с движением самолёта (спутника) обеспечивает непрерывный последовательный охват определённой полосы местности, размер которой зависит от апертуры (действующего отверстия оптической системы объектива) сканера и высоты полёта самолёта или спутника. Ширина снимаемой полосы местности определяется углом сканирования сканера, а линейное разрешение на местности (ширина скана, размер пиксела) - мгновенным углом зрения. У обзорных сканеров угол сканирования достигает, у высокоинформативных (детальных) - и меньше. Соответственно этому и мгновенный угол зрения устанавливают от нескольких градусов до десятых долей минуты. Угол сканирования и мгновенный угол зрения, соответственно полоса съёмки и разрешение на местности, - взаимозависимые величины. Чем выше разрешение, тем уже полоса съёмки. Так, при съёмке из космоса при разрешении 1-2 км. Снимают полосу местности в несколько тысяч километров, а при разрешении 20-50 м ширина полосы съёмки не превышает 100-200км.

Оптико - механические сканеры бывают одно - и многоканальные (2 и более). Обычно для съёмки земной поверхности применяют сканеры, работающие в видимом и ИК диапазонах (0,5 - 12 мкм). Результат регистрации излучения при съёмке методом оптико - механического сканирования представляет собой матрицу многомерных векторов. Каждый вектор отображает определённую элементарную площадку (пиксель) на Земле, а каждая его компонента соответствует одному из спектральных каналов.

При съёмке в видимом и ближнем ИК - диапазонах (0,4 - 3 мкм) применяют фотоэлектрические, а в среднем и дальнем ИК - диапазонах (3 -12 мкм) - термоэлектрические приёмники излучения. К фотоэлектрическим приёмникам относят электронные приборы, действие которых основано на внешнем (электровакуумные фотоэлементы, фотоэлектронные умножители) и внутреннем (полупроводниковые фотосопротивления, фотодиоды и др.) фотоэффектах. Термоэлектрические приёмники основаны на термоэлектронной эмиссии, они реагируют на поглощённое излучение через нагревание чувствительного элемента, что позволяют регистрировать ИК - тепловое излучение в широком спектральном диапазоне. К числу термоэлектрических приёмников относятся болометры, радиационные термоэлементы (термопары) и др. Тепловую съёмку осуществляют сканирующими радиометрами в ночное и дневное время суток.

В сканерах устанавливают несколько сенсоров, позволяющих получать изображение одновременно в различных спектральных каналах. Информацию, полученную в процессе сканерной съёмки, передают в виде цифрового изображения по радиоканалу на приёмный пункт или записывают на борту на магнитный носитель. Материалы съёмки потребителям передаются в виде записи на магнитном носителе, например на СД - дисках, с последующей визуализацией на местах обработки снимков.

По своим геометрическим свойствам и разрешению на местности сканерные снимки, которые получались съёмочными системами первых поколений, уступали фотоснимкам. Однако высокая чувствительность приёмников излучения сканеров позволяет выполнять съёмку в узких (несколько десятков нанометров) спектральных интервалах, в пределах которых различия между некоторыми природными объектами более чётко выражены. В цифровых данных, полученных с помощью сканеров отсутствуют «шумы» которые неминуемо появляются при фотосъемке и фотолабораторной обработке съёмочных материалов.

Изобретение относится к области лазерной локации и может быть использовано в системах обнаружения оптических и оптико-электронных (ОЭ) средств наблюдения в естественных условиях и их идентификации. Перед зондированием осуществляют прием сигналов естественного фонового излучения, в котором измеряют спектральное распределение излучения и определяют в нем соотношение между интенсивностями спектральных компонент на трех выбранных длинах волн. Генерируют пучки лазерного излучения на этих длинах волн с соотношением интенсивностей пучков, соответствующим соотношению интенсивностей спектральных компонент в принятом фоновом излучении. Формируют суммарный пучок лазерного излучения и осуществляют зондирование и прием отраженного лазерного излучения на трех длинах волн и в широкой спектральной полосе. Измеряют уровни принятых оптических сигналов и определяют величины показателей световозвращения для трех длин волн и для широкой полосы длин волн. По указанным величинам формируют спектральный портрет показателя световозвращения, по которому осуществляют обнаружение и распознавание оптических и ОЭ средств наблюдения. Технический результат - повышение вероятности обнаружения и распознавания оптических и ОЭ приборов и средств наблюдения и определение их принадлежности к известным классам ОЭ приборов. 2 н. и 4 з.п. ф-лы, 1 ил.

Рисунки к патенту РФ 2524450

Изобретение относится к оптической и лазерной локации, системам наблюдения в оптическом диапазоне и к квантовой электронике.

Изобретение может быть использовано в системах наблюдения для обнаружения оптических и оптико-электронных (ОЭ) приборов и средств наблюдения и прицеливания, а также для определения типа обнаруженных оптических и ОЭ средств и их идентификации.

Известен способ обнаружения средств оптического и оптоэлектронного типа по патенту РФ № 2133485 , заключающийся в зондировании контролируемого объема пространства сканируемым импульсным лазерным излучением, приеме оптических сигналов с заданной дальности, преобразовании принятых сигналов в видеосигнал, пороговой селекции принятых сигналов, зондировании объема пространства с фиксированной частотой, кодировании излучаемой последовательности импульсов лазерного излучения, выявлении сигнала тревоги. К недостаткам данного способа следует отнести невысокую вероятность правильного обнаружения средств оптического типа при простой пороговой обработке (селекции) принятого сигнала на фиксированной длине волны от контролируемого объема пространства, а также невозможность определения принадлежности обнаруженного оптического средства к конкретному классу средств оптоэлектронного типа, т.е. распознавания обнаруженного объекта. Вторым недостатком данного способа обнаружения является его собственная уязвимость по отношению к оптическим средствам обнаружения и распознавания внешнего наблюдателя, т.к. при осуществлении зондирования контролируемого объема пространства (КОП) импульсным лазерным излучением на фиксированной длине волны устройство, реализующее способ, демаскирует себя и может быть обнаружено и идентифицировано внешним наблюдателем, осуществляющим поиск и контроль излучений, облучающих место нахождения средств обнаружения данного вероятного стороннего наблюдателя.

Известен способ обнаружения глаз людей и животных по патенту РФ № 2223516 от 10.02.2004 г. , включающий облучение лоцирумого объема пространства импульсным сканируемым излучением в диапазоне длин волн 450-700 мкм и определение глаз по отношению интенсивностей отраженного излучения на двух длинах волн - 1 и 2 . К недостаткам данного способа следует отнести невысокую достоверность полученных результатов, малую вероятность правильного определения наличия заданного объекта, малую дальность действия. Указанные недостатки обусловлены отсутствием определения и компенсации фонового излучения, которое в реальных условиях может полностью изменить соотношения между принимаемым излучением на 1 и 2 , особенно при широкополосном зондирующем излучении. Также недостатком данного способа является его ограниченное применение, что исключает возможность его использования для обнаружения и распознавания широкого класса оптических и ОЭ приборов.

В качестве прототипа выбран способ обнаружения оптических и оптоэлектронных средств наблюдения по патенту РФ № 2278399 .

Данный способ включает зондирование контролируемого объема пространства (КОП) сканируемым импульсным лазерным излучением (ЛИ) на фиксированной длине волны, прием отраженного от КОП ЛИ с заданной дальности, преобразовании принятого ЛИ в электрический сигнал и пороговую обработку сформированного электрического сигнала, формирование сигнала тревоги - сигнала обнаружения объекта на основании пороговой обработки, определение дальности до обнаруженного объекта, прием сигналов естественного фонового излучения от КОП, изменение частоты повторения ЛИ, формирование разностного видеосигнала из сигналов ЛИ и сигналов естественного фонового излучения и его пороговую обработку, формирование композитного видеосигнала и его преобразование в оптический сигнал для наблюдения оператором.

К недостаткам способа-прототипа следует отнести невысокую вероятность и эффективность правильного обнаружения приборов и средств наблюдения оптико-электронного типа, а также невозможность распознавания обнаруженных объектов и определение их принадлежности к ОЭ-приборам соответствующего класса. Эти недостатки обусловлены тем, что собственно обнаружение объекта - прибора ОЭ-типа - осуществляют посредством простой пороговой обработки принятого отраженного сигнала от КОП, т.е. на основании превышения принятого импульсного сигнала некоторого установленного уровня. При этом отраженный от КОП сигнал, превышающий фиксированный порог, может быть получен и от ряда объектов естественного происхождения, не принадлежащих к приборам ОЭ-типа, т.к. уровень отраженного сигнала на некоторой фиксированной длине волны лазерного излучения не может быть использован в качестве достоверного критерия принадлежности обнаруженного объекта к приборам ОЭ-типа. Различные аддитивные манипуляции с уровнем фонового излучения и формирование разностных сигналов также не приводят к повышению вероятности правильного обнаружения приборов и средств ОЭ-типа.

В качестве прототипа для устройства, реализующего способ, выбрано устройство, реализующее способ-прототип .

Достигаемым новым техническим результатом является повышение вероятности обнаружения и распознавания оптических и оптоэлектронных приборов и средств наблюдения и определение их принадлежности к известным классам ОЭ-приборов. Также достигается дополнительный положительный эффект - уменьшение возможности обнаружения предлагаемого устройства внешними наблюдателями, в т.ч. средствами обнаружения ОЭ-типа.

Указанный технический результат достигается следующим.

1. В способе, включающем зондирование контролируемого объема пространства (КОП) сканируемым импульсным лазерным излучения (ЛИ) на длине волны 1 , прием отраженных сигналов ЛИ и сигналов естественного фонового излучения от КОП, преобразование принятого ЛИ в электрический сигнал, его пороговую обработку и определение дальности до обнаруженного ОЭСН,

прием сигналов естественного фонового излучения от КОП осуществляют перед зондированием КОП, в принятом естественном фоновом излучении от КОП измеряют спектральное распределение излучения, в измеренном спектральном распределении определяют соотношение между интенсивностями W 1 , W 2 , W 3 основных спектральных компонент цветовой гаммы видимого диапазона длин волн, на длине волны 1 и на двух дополнительных длинах волн 2 , 3 , соответствующих интенсивностям W 1 , W 2 , W 3 и образующих в совокупности оптическое излучение белого цвета, генерируют пучки импульсного ЛИ на длинах волн 1 , 2 , 3 с соотношением интенсивностей пучков P 1 , P 2 , P 3 , соответствующим соотношению между интенсивностями W 1 , W 2 , W 3 основных спектральных компонент в спектральном распределении фонового излучения от КОП, формируют суммарный пучок ЛИ посредством оптического суммирования пучков на длинах волн 1 , 2 , 3 , измеряют его спектральное распределение, сравнивают со спектральным распределением естественного излучения от КОП и корректируют его до достижения равенства соотношений спектральных компонент суммарного пучка ЛИ и естественного фонового излучения от КОП на длинах волн 1 , 2 , 3 , далее осуществляют зондирование КОП сформированным пучком ЛИ и прием на длинах волн 1 , 2 , 3 и в широкой спектральной полосе = 3 - 1 , после преобразования принятого ЛИ в электрические сигналы и их пороговой обработки, измеряют уровни принятых оптических сигналов ЛИ, определяют величины показателей световозвращения (ПСВ) для трех длин волн и для полосы ДА, по ним формируют спектральный портрет ПСВ обнаруженного ОЭСН и сравнивают его с банком данных ПСВ, на основании сравнения осуществляют окончательное обнаружение ОЭСН и определение его принадлежности к известному типу ОЭСН (распознавание ОЭСН).

2. Определение показателей световозвращения (ПСВ) П i для каждой из используемых для подсвета контролируемого пространства (КОП) длин волн лазерного излучения i (i=1, 2, 3) осуществляют в соответствии со следующей формулой:

,

где E i - величина уровня принятого оптического сигнала, отраженного от КОП на длине волны i (1=1, 2, 3) зондирующего КОП ЛИ;

Величина энергии (мощности) зондирующего КОП ЛИ на длине волны i ;

Ni - расходимость пучка ЛИ на длине волны i (плоский угол);

L - измеренная дальность до обнаруженного объекта;

D пр - диаметр (действующий) приемного объектива реализующего способ устройства;

ОМТ - величина пропускания оптико-механического тракта реализующего устройства;

Атм - величина пропускания атмосферного тракта на соответствующей длине волны i .

3. Определение показателя световозвращения (ПСВ) П для широкой полосы длин волн = 3 - 1 зондирующего ЛИ осуществляют в соответствии со следующей формулой:

,

где E - величина уровня принятого оптического сигнала, отраженного от КОП, зарегистрированного широкополосным фотоприемником устройства, реализующего способ, в широкой полосе длин волн = 3 - 1 ;

P - суммарная величина энергии (мощности) ЛИ, зондирующего КОП ;

Ср, , атм ср - усредненные по длинам волн 1 , 2 , 3 величины расходимости ЛИ, пропускания оптико-механического тракта и пропускания атмосферы.

4. В устройство обнаружения оптических и оптико-электронных средств наблюдения, содержащее последовательно размещенные на оптической оси блок сканирования, первый лазерный генератор, работающий на первой длине волны 1 , первый объектив, оптический вход которого связан посредством оптического зеркала с оптическим входом блока сканирования, первый фотоприемник, оптический вход которого посредством первого оптического фильтра, первой линзы и второго оптического зеркала связан с оптическим выходом первого объектива, первый блок обработки информации, вход которого соединен с выходом первого фотоприемника, второй объектив, оптическая ось которого параллельна оптической оси блока сканирования,электрический вход которого подключен к первому блоку обработки информации, введены второй и третий лазерные генераторы, три управляемых оптических фильтра, оптический сумматор, оптический спектроанализатор, четыре фотоприемных блока, второй блок обработки информации, блок распознавания, первое и второе откидные зеркала, три фотоприемника, три оптических фильтра, четыре полупрозрачных зеркала и четыре оптических зеркала, а также четыре волоконно-оптических световода, при этом оптический вход оптического спектроанализатора связан с оптическим выходом второго объектива, оптический выход оптического спектроанализатора посредством волоконно-оптических световодов связан со входами четырех фотоприемных блоков, выходы которых подсоединены ко второму блоку обработки информации, оптический вход оптического сумматора через три управляемых оптических фильтра, полупрозрачное и оптическое зеркала связаны с соответствующими оптическими выходами первого, второго и третьего лазерных генераторов, выход оптического сумматора связан с оптическим входом блока сканирования, а посредством первого откидного зеркала, двух оптических зеркал и второго откидного зеркала оптически связан с оптическим входом оптического спектроанализатора, оптический выход первого объектива оптически связан с вновь введенными вторым, третьим и четвертым фотоприемниками посредством трех полупрозрачных зеркал, трех линз и трех оптических фильтров, выходы второго, третьего и четвертого фотоприемников подсоединены ко входам первого блока обработки информации, выходы которого подключены к блоку распознавания и второму блоку обработки информации, выходы которого подсоединены к управляющим входам первого, второго и третьего лазерных генераторов, первого, второго и третьего управляемых фильтров и первого и второго откидных зеркал.

5. Оптический спектроанализатор выполнен на основе оптической дифракционной решетки.

6. Блок распознавания выполнен на основе цифровой электронно-вычислительной машины, содержащей блок данных величин эталонных портретов спектральных показателей световозвращения (ПСВ).

На фиг.1 приведена блок-схема устройства, реализующего предложенный способ, где обозначены следующие элементы.

1 - Лазерный генератор, работающий на длине волны 1 (ЛГ)

2; 3 - Лазерные генераторы, работающие на длинах волн 2 и 3

4; 5; 6 - Управляемые оптические фильтры

7 - Оптический сумматор

8 - Блок сканирования

9 - Первый объектив

10; 11; 12; 13 - Фотоприемники

14; 15; 16; 17 - Линзы

18 - Первый блок обработки информации

19 - Второй объектив

20 - Оптический спектроанализатор

21; 22; 23; 24 - Фотоприемные блоки (ФП)

25 - Второй блок обработки информации

26 - Полупрозрачное зеркало

27; 28; 29 - Оптические зеркала

30 - Первое откидное зеркало

31 - Блок управления вторым откидным зеркалом

32 - Блок управления первым откидным зеркалом

33 - Второе откидное зеркало

34; 35 - Оптические зеркала

36; 37; 38 - Полупрозрачные зеркала

39 - Оптическое зеркало

40; 41; 42; 43 - Оптические фильтры

44 - Блок распознавания

45 - контролируемый объем пространства (КОП)

46 - оптико-электронный прибор (ОЭП)

47; 48; 49; 50 - волоконные оптические световоды.

В ограничительной части формулы изобретения на устройство присутствуют элементы, по сути и функциям общие с элементами устройства-прототипа, но имеющие разные наименования:

Первый блок обработки информации, функции которого в прототипе выполняет блок обработки видеосигналов;

Первый объектив, в прототипе входящий в состав видеокамеры;

Блок сканирования, в прототипе входящий в состав лазера и обеспечивающий зондирование КОП импульсным ЛИ.

При этом второй блок обработки информации является вновь введенным и выполняет новую функцию обработки оптических сигналов с выхода оптического спектроанализатора 20 (фиг.1).

Принцип действия способа заключается в следующем.

С помощью блока сканирования 8 (см. фиг.1) осуществляют зондирование КОП 45 импульсным ЛИ одновременно на трех длинах волн 1 , 2 , 3 , генерируемых лазерными генераторами (ЛГ) 1, 2, 3. Управление блоком сканирования осуществляют по сигналам, поступающим от первого блока обработки информации 18.

До зондирования КОП ЛИ осуществляют измерение спектрального распределения фонового излучения от КОП 45. Для этого с помощью второго объектива 19, направленного на КОП, осуществляют непрерывный прием естественного фонового излучения. Принятое фоновое излучение поступает на вход оптического спектроанализатора 20, который осуществляет формирование спектрального распределения принятого излучения в виде, например, пространственного оптического распределенного сигнала.

Отдельные спектральные составляющие сформированного спектрального пространственного распределения с помощью волоконных световодов 47÷50 поступают с выхода оптического спектроанализатора 20 на входы фотоприемных блоков 21÷24, которые регистрируют уровни фонового излучения от КОП на длинах волн 1 2 3 - фотоприемные блоки 21÷23, а также регистрируют уровень суммарного фонового излучения в спектральном диапазоне = 3 - 1 (фотоприемный блок - 24). Информация об уровнях спектрального распределения фонового излучения на указанных длинах волн поступает на вход второго блока обработки информации 25. Измерение спектрального распределения фонового излучения от КОП 45 осуществляют на трех фиксированных длинах волн 1 2 3 , которые выбирают соответствующими основным компонентам цветовой гаммы видимого диапазона длин волн, а именно: 1 - соответствует длине волны красного цвета, 2 - длине волны зеленого цвета, 3 - длине волны синего цвета. Соответственно 1 =0,7 мкм, 2 =0,54 мкм, 3 =0,43 мкм.

В настоящее время для указанных длин волн существуют источники лазерного излучения . Во втором блоке обработки информации 25 на основе уровней интенсивности сигналов с выходов фотоприемных блоков 21, 22, 23 определяют соотношение между интенсивностями W 1 , W 2 , W 3 спектральных компонент фонового излучения на выбранных длинах волн соответственно 1 2 3 . Далее в моменты времени генерации лазерного излучения с помощью лазерных генераторов поз.1, 2, 3 устанавливают соотношение между интенсивностями генерируемых лазерных импульсов соответственно на длинах волн 1 -P 1 (лазерный генератор 1 на фиг.1); 2 -P 2 и 3 -P 3, соответствующими соотношению между интенсивностями спектральных компонент на соответствующих длинах волн 1 2 3 в измеренном спектральном распределении фонового излучения от контролируемого объема пространства КОП 45. При этом устанавливают следующее соотношение между величинами (интенсивностями) лазерных импульсов, генерируемых лазерными генераторами 1, 2, 3 на длинах волн 1 2 3: P 1 P 2 P 3 и интенсивностями W 1 , W 2 , W 3 спектральных компонент фонового излучения на длинах волн 1 2 3:

Управление величинами лазерных импульсов, генерируемых лазерными генераторами поз.1, 2, 3, осуществляют по командам от второго блока обработки информации 25, поступающим в лазерные генераторы, и сформированные на основании измерений уровней лазерного излучения от генераторов ЛИ с помощью фотоприемных блоков 21-24. Далее осуществляют оптическое суммирование трех лазерных импульсов - пучков лазерного излучения, генерируемых лазерными генераторами поз. 1, 2, 3 на фиг.1 с помощью оптического сумматора 7, на который поступает лазерное излучение с выходов указанных лазерных генераторов. Сформированное суммарное лазерное излучение на выходе оптического сумматора 7 содержит спектральные компоненты на трех длинах волн 1 2 3 в соотношении, соответствующем соотношению спектральных компонент в фоновом излучении КОП 45.

Далее осуществляют измерение спектрального распределения сформированного суммарного пучка лазерного излучения с выхода оптического сумматора 7 и сравнение его с измеренным спектральным распределением фонового излучения от контролируемого объема пространства. Для этого с помощью первого и второго откидных зеркал 30 и 33 сформированное излучение с выхода оптического сумматора 7 поступает на вход оптического спектроанализатора 20, осуществляющего формирование пространственного спектрального распределения, которое затем регистрируют на длинах волн 1 2 3 посредством фотоприемных блоков 21-23. Блоки 21-23 аналогично регистрируют спектральное распределение фонового излучения от КОП 45. Блок 24 регистрирует суммарный уровень излучения в некотором выбранном диапазоне длин волн = 3 - 1 . Во втором блоке обработки информации 25 осуществляют регистрацию спектрального распределения суммарного пучка ЛИ P 11 , P 21 , P 31 (с учетом ослабления в оптических элементах 7, 28, 29, 30, 33, 20, через которые проходит сформированное ЛИ). Далее измеренное распределение интенсивностей (амплитуд импульсов) сравнивают с ранее измеренным и запомненным в блоке информации 25 спектральным распределением интенсивности фонового излучения W 1 , W 2 , W 3 от КОП 45. По результатам этого сравнения осуществляют коррекцию спектрального пучка ЛИ до достижения равенства соотношений спектральных компонент P 11 , P 21 , P 31 на выходе оптического сумматора 7 соотношениям спектральных компонент W 1 , W 2 , W 3 в измеренном спектральном распределении фонового излучения от КОП 45.

Коррекцию осуществляют с помощью управляемых оптических фильтров 4, 5, 6, на которые поступают управляющие сигналы с выхода второго блока обработки информации 25, раздельно для каждой длины волны 1 2 3 . Подстройку пропускания управляемых фильтров 4, 5, 6 раздельно по каждой длине волны осуществляют до точного достижения следующего равенства:

В результате осуществленной коррекции спектрального распределения сформированного суммарного пучка на выходе оптического сумматора 7 образуется пучок лазерного излучения на трех фиксированных длинах волн 1 2 3 , образующих цветовую гамму белого света, спектральное распределение которого на основных длинах волн 1 2 3 точно соответствует спектральному распределению (составу) данных длин волн в фоновом излучении от КОП. Сформированные в результате данной коррекции интенсивности лазерных пучков P 1 , P 2 , P 3 на соответствующих длинах волн 1 2 3 , измеренные фотоприемными блоками 21-23, а также величину P в спектральном диапазоне , измеренную блоком 24, запоминают во втором блоке обработки информации 25.

В результате в блоке обработки информации 25 запоминаются следующие величины энергии (или мощности) импульсов пучков ЛИ P ni , генерируемые лазерными генераторами, и приведенными к выходу блока сканирования 8:

, i=1, 2, 3; 1 ={ 1 ; 2 ; 3 ;},

где i - соответствующий корректирующий коэффициент для каждой длины волны i , связывающий величину энергии (мощности) ЛИ E i на соответствующей длине волны i , измеренной в ФП блоках 21÷24, с величиной энергии ЛИ на выходе блока сканирования 8, т.е. с величиной энергии (мощности) ЛИ, излученной в направлении КОП 45. Данные измеренные величины далее будут использованы для определения параметров спектрального портрета показателей световозвращения обнаруженного объекта-ОЭП поз.46 в КОП 45. Корректирующие коэффициенты i являются фиксированными техническими параметрами устройства и определяются соответствующими коэффициентами пропускания j оптических зеркал, блока сканирования 8 и спектроанализатора 20, волоконных световодов 47÷50 на соответствующих длинах волн:

,

где j - пропускание соответствующего оптического элемента соответствующей позиции на фиг.1 на длине волны i . Например, 8 - пропускание блока сканирования 8. Пропускание зеркал 28, 29 выбрано достаточно малым для ослабления излучения с выхода оптического сумматора 7 до уровня чувствительности фотоприемных блоков 21-24. Далее этот сформированный суммарный пучок ЛИ поступает на блок сканирования 8, с помощью которого осуществляют зондирование контролируемого объема пространства сканируемым импульсным излучением на трех длинах волн 1 2 3 одновременно. На этой стадии откидное зеркало 30 не участвует в работе оптического канала. Далее осуществляют прием оптического излучения, отраженного от КОП 45 с помощью первого объектива 9 и преобразование принятого излучения в электрические сигналы посредством фотоприемников поз.10-12 (фиг.1), каждый из которых работает на соответствующей длине волны 1 2 3 . Фотоприемник поз.13 регистрирует излучение в широкой спектральной полосе = 3 - 1 . Перед каждым из фотоприемников поз.10-12 установлены спектральные узкополосные фильтры (например интерференционные), на соответствующую длину волны 1 - 3 , поз.40-43. Перед фотоприемником 13 установлен оптический фильтр 43 нейтрального типа с широкой полосой пропускания . Далее электрические сигналы с выходов фотоприемников 10-13 поступают в первый блок обработки информации 18, в котором осуществляют пороговую обработку каждого из электрических сигналов для соответствующих фиксированных длин волн 1 ÷ 3 (фотоприемники 10-12), а также сигнала с выхода фотоприемника 13 для широкой спектральной полосы = 3 - 1 . Пороговая обработка заключается в сравнении уровня (амплитуды) i импульсного сигнала с соответствующего фотоприемника 10-13 с пороговым уровнем Пi , установленным для данной длины волны i = 1 , 2 , 3 , или с пороговым уровнем П , установленным для широкой спектральной полосы приема . Решение об обнаружении объекта в виде бликующего оптического или оптико-электронного прибора предварительно принимают при условии превышения установленного порогового уровня хотя бы для одной из длин волн 1 , 2 или 3 на выходе одного из фотоприемников поз.10-12, или при превышении установленного порогового уровня П сигналом с выхода фотоприемника 13, работающего в широкой спектральной полосе приема :

Установление пороговых уровней i в каждом из спектральных каналов приема на длинах волн 1 , 2 , 3 осуществляют до приема излучения, отраженного от КОП 45, а также устанавливают пороговый уровень П в суммарном спектральном канале с широкой спектральной полосой приема излучения = 3 - 1 , регистрируемого фотоприемником 13.

Пороговые уровни устанавливают в соответствии с чувствительностью используемых фотоприемников поз.10-13, работающих на указанных дискретных длинах волн 1 , 2 , 3 , и в широком диапазоне - фотоприемник 13. Пороговые уровни устанавливают программно в первом блоке обработки информации 18 в соответствии со следующими условиями:

где K 1 - требуемое отношение сигнал/шум, которое для обеспечения, например, вероятности правильного обнаружения р=0,99 выбирают равным K 1 =3; - чувствительность фотоприемника на длине волны i i=1, 2, 3, или фотоприемника 13, работающего в широком спектральном диапазоне .

Данная чувствительность представлена здесь в виде уровня мощности (или энергии) импульсного светового излучения на входе фотоприемника 11-13 на соответствующей длине волны i или в диапазоне длин волн , при которой на выходе фотоприемника образуется электрический сигнал, равный по амплитуде уровню собственных шумов ш данного фотоприемника, т.е. реализуется величина отношения сигнал/шум, равная единице.

После предварительного обнаружения объекта в каком-либо из спектральных каналов i , или в широкополосном канале приема (ФП 13), осуществляют измерение дальности L до обнаруженного объекта в соответствии со стандартной процедурой определения дальности по времени задержки 1 импульса приема относительно момента излучения лазерного импульса зондирования КОП 45:

где C - скорость света.

Далее в каждом из спектральных каналов приема 1 , 2 , 3 , (ФП 10-13) осуществляют измерение уровня принятого оптического сигнала E i относительно уровня чувствительности, соответствующего ФП поз.1-13 , выраженной в энергетических единицах.

Для этого в первом блоке обработки информации 18 при регистрации электрических сигналов с выходов ФП 10-13 определяют путем оцифровки уровень (амплитуду) электрического сигнала E Эi с выхода каждого ФП 10-13 и определяют для каждого спектрального канала приема отношение K ПШi - сигнал/шум, равное отношению , где E опрi - запомненный в блоке 18 уровень собственного шумового сигнала данного ФП 10-13, соответствующий уровню энергии (мощности) входного оптического сигнала для этого ФП, равный , т.е. уровню энергетической чувствительности данного ФП. Далее уровень принятого оптического сигнала на входе ФП E i и E определяют по формуле:

где в последней формуле определен уровень входного сигнала в широкополосном канале приема (ФП 13).

показателей световозвращения (ПСВ) Пi для данного обнаруженного объекта, сигнал от которого превысил установленный пороговый уровень в одном или нескольких каналах приема ( 1 ÷ 3 , ).

Измерение показателей световозвращения i=1, 2, 3, П i , осуществляют в первом блоке обработки информации 18 на основе указанных измеренных величин уровней принятого сигнала в каждом из четырех каналов приема (ФП 10-13), на основании измерений, а также с использованием величин уровней лазерных импульсных сигналов, генерируемых лазерными генераторами 1-3 и измеренных фотоприемными блоками поз.21-24 (P 1 , P 2 , P 3). Между первым и вторым блоками обработки информации осуществляется постоянный обмен информацией по связывающей их линии связи.

Измеренные величины показателей световозвращения (ПСВ) на трех длинах волн, а также ПСВ для широкой спектральной полосы П образуют некоторый спектральный портрет {П i ; П } ПСВ отраженного сигнала от КОП для данного фиксируемого положения визирной оси блока сканирования 8 и фиксированного момента времени, при которых получены отраженные импульсы оптического излучения, электрические сигналы от которых на выходах ФП 10-13 превысили установленные пороговые уровни в первом блоке обработки информации 18.

Данный полученный спектральный портрет показателей световозвращения (ПСВ) П i , П используют далее для более точного обнаружения и окончательного определения наличия в КОП 45 прибора оптического или оптоэлектронного типа (для данного положения в пространстве визирной оси блока сканирования 8). При этом полученный спектральный портрет ПСВ позволяет определить принадлежность обнаруженного оптоэлектронного прибора к некоторому классу оптических приборов, например, определить наличие оптико-электронного прибора наблюдения с телевизионной камерой, оптического прицела или наличие наблюдателя с биноклем или стереотрубой.

Указанные ОЭ-приборы и приборы наблюдения имеют существенно различающиеся спектральные портреты ПСВ в видимом или ближнем ИК-диапазоне. Для осуществления распознавания обнаруженного объекта в КОП 45 по измеренному спектральному портрету ПСВ {П i ; П } информацию о величине ПСВ с выхода первого блока обработки информации 18 направляют на вход блока распознавания 44, где осуществляют сравнение полученного и измеренного спектрального портрета ПСВ {П i ; П } с банком данных спектральных портретов ПСВ различных типов оптических и оптико-электронных приборов. По результатам сравнения осуществляют определение принадлежности обнаруженного оптического или ОЭ-прибора к соответствующему классу оптических приборов известного типа.

Информация о результатах сравнения передается потребителю и отображается на дисплее блока 44. На этом цикл зондирования КОП 45 и обнаружения и опознавания оптических и ОЭ приборов, находящихся в КОП, завершен.

Определение спектрального портрета показателей световозвращения осуществляют в первом блоке обработки информации 18 следующим образом.

Определение ПСВ П i осуществляют на основе известной формулы лазерной локации , определяющей связь между энергией (мощностью) импульсного лазерного излучения , сформированного лазерным генератором на соответствующей длине волны i и излученного в направлении КОП 45, с величиной энергии E i принятого импульсного излучения от КОП на соответствующей длине волны i и ряда параметров, характеризующих среду распространения, отражающий объект в КОП, а также ряд геометрических и оптических параметров приемных каналов устройства, реализующего способ:

где ni - расходимость ЛИ на длине волны i совпадает с расходимостью ЛИ на выходе соответствующего лазерного генератора (1, 2, 3), которая известна из паспортных данных на используемые лазерные генераторы поз.1, 2, 3, или может быть получена из измерений;

L - дальность до отражающего объекта в КОП 45;

S об - площадь объекта, эффективно отражающая ЛИ на длине волны i с расходимостью обратной диаграммы направленности об и коэффициентом отражения на длине волны i отр;

D пр - диаметр приемного объектива поз.9 фиг.1 в приемном устройстве, реализующем способ;

П - полный коэффициент пропускания лазерного излучения на длине волны i , включающий следующие составляющие:

П = ОМТ · атм, где

ОМТ - пропускание оптико-механического тракта устройства, реализующего способ на фиг.1 в передающей и приемной частях устройства, (при условии, если в измерениях энергии излученного и принятого от объекта импульсов ЛИ не учтены пропускания оптико-механического тракта. В противоположном случае омт =1).

Атм - коэффициент пропускания атмосферного тракта в прямом и обратном распространении зондирующего лазерного излучения на дальности до объекта L.

Данный коэффициент пропускания атмосферы на двойной дальности до объекта 2L определяют в соответствии со следующей оценочной формулой:

Где показатель ослабления атмосферы

L MDB - метеорологическая дальность видимости, определяемая из известных метеорологических таблиц .

Таким образом, в представленной формуле лазерной локации (8) наряду с параметрами, отражающими характеристики объекта, все остальные параметры являются известными или определены и измерены в результате работы устройства, реализующего способ: L - измеренная дальность до объекта; , E i - измеренные мощности (энергии) (3) в излучаемом и принятом импульсе ЛИ на длинах волн i , i=1, 2, 3,

Величина L MDB вводится априорно оператором на основании известных таблиц и исходя из визуальной оценки атмосферных условий и времени суток в период действия устройства, реализующего способ. Фотоприемники поз.10-13 на фиг.1 регистрируют энергию (уровень) принятых импульсных сигналов ЛИ, отраженных от КОП, на соответствующих длинах волн ЛИ, а также в широкой полосе длин волн, и преобразуют уровень этих сигналов в электрическую форму. В электрической форме информация об уровнях принятых сигналов ЛИ поступает с выходов фотоприемников 10-13 на входы первого блока обработки информации 18.

В формуле (8) величина

по определению является показателем световозвращения наблюдаемого и освещаемого лазерным излучением объекта на длине волны i . Все составляющие, входящие в данную величину (10), обусловлены собственными отражательными характеристиками объекта. Отсюда на основании формулы (8), измеренных параметров L, E i , . и известных параметров ni , D пр, ОМТ и параметра атм, определенного по формуле (9), определяют спектральный показатель световозвращения ПСВ для каждой из используемых длин волн i i=1, 2, 3, в соответствии со следующим соотношением для П i , получаемым из формул (8-10):

где атм из формулы (9).

Для широкого спектрального диапазона длин волн = 3 - 1 величину показателя световозвращения ПСВ=П определяют на основании следующей формулы (11-2), в которой вместо E i подставляют величину E энергии (мощности) импульса ЛИ, зарегистрированного широкополосным фотоприемником поз.13 в диапазоне ; в качестве величины энергии (мощности) ; в качестве величин ; ОМТ и атм подставляют их усредненные по длине волны значения ср; ОМТ ср; атм ср.

Совокупность измеренных величин спектральных показателей световозвращения для трех длин волн и суммарной полосы образуют спектральный портрет показателя световозвращения {П }П i для одного акта освещения элемента (наблюдаемой точки) КОП 45 трехволновым зондирующим излучением.

Таким образом, в первом блоке обработки информации 18 для каждого излученного и принятого от КОП 45 импульса ЛИ на трех длинах волн определяют величину показателей световозвращения ПСВ на соответствующих длинах волн i , из совокупности длин волн { i } лазерных излучений, которыми осуществляют зондирование КОП, и для широкой полосы .

На основании полученных значений совокупности величин показателя световозвращения образуют спектральный портрет ПСВ для одного акта зондирования КОП лазерным излучением на трех длинах волн для одного конкретного фиксированного направления в пространстве визирной оси блока сканирования 8. Полученная величина спектрального портрета ПСВ заносится в память первого блока обработки информации 18. Далее блок сканирования 8 переключает (направляет) свою визирную ось в другую (соседнюю) точку пространства (КОП 45), которую освещают трехволновым лазерным излучением, принимают отраженное от КОП излучение, измеряют уровни отраженного и принятого сигналов на длинах волн 1 ÷ 3 и определяют спектральный портрет ПСВ по формулам (11), (11-2), величины которого заносят в память первого блока обработки информации 18. Таким образом, в результате зондирования КОП ЛИ на трех длинах волн для каждого направления в пространстве от точки расположения устройства, реализующего способ, в сторону КОП и для каждой точки (локальной) зоны наблюдения КОП измеряют и образуют величину спектрального портрета ПСВ (если в этой точке принятым сигналом хотя бы на одной длине волны i превышен установленный в блоке 18 порог обнаружения). Операция сравнения измеренных спектральных портретов ПСВ с базой данных в блоке распознавания 44 позволяет осуществить более точное обнаружение приборов оптического и ОЭ типа, имеющих конкретные значения спектрального портрета ПСВ, а также осуществить распознавание обнаруженного оптико-электронного прибора - определить его принадлежность к конкретному классу оптических приборов, эталонные значения спектральных портретов ПСВ которых хранятся в базе данных - в блоке памяти блока распознавания 44.

Сравнение измеренного спектрального портрета ПСВ осуществляют следующим образом.

Осуществляют поэлементное сравнение величин показателя световозвращения в измеренном спектральном портрете ПСВ и в эталонном спектральном портрете ПСВ отдельно для каждой из трех длин волн i i=1÷3 и диапазона , и формируют разностный спектральный портрет

где - величина показателя световозвращения некоторого эталонного спектрального портрета эталонного оптико-электронного прибора для фиксированной длины волны i , - эталонная величина ПСВ для диапазона .

Далее на основании измеренного разностного спектрального портрета R (12) определяют параметр соответствия F между измеренным спектральным портретом и эталонным спектральным портретом по формуле:

Далее указанное сравнение измеренного спектрального портрета ПСВ осуществляют для всех эталонных спектральных портретов П Э, хранящихся в базе данных - блоке памяти блока распознавания 44, и формируют величины разностных портретов R i (12) и параметров соответствия F j (13) для каждого из эталонов в базе данных блока 44 (j=1÷N).

При этом формируют массив величин соответствия {F j ; j=1÷N} (14).

Далее из сформированного массива величин соответствия (14) выбирают от одного до трех величин F j , имеющих минимальное значение из всех остальных величин F j измеренного массива F j (14). При этом определяют указанные три минимальных величины соответствия F j =min{F j j=1÷N} (15) j=ja 1 ; ja 2 ; ja 3 , по которым судят о принадлежности обнаруженного оптико-электронного прибора к соответствующему классу приборов оптико-электронного типа.

В предлагаемом способе обнаружения оптических и оптоэлектронных средств зондирование КОП 45 осуществляют одновременно на трех длинах волн 1 ÷ 3 . При этом ЛИ на трех длинах волн формируют в видимом диапазоне длин волн, а длины волн выбраны соответствующими основным компонентам цветовой гаммы видимого диапазона, обеспечивающие восприятие наблюдателем суммарного длинноволнового излучения { 1 , 2 , 3 }, как излучения белого цвета. При этом длины волн трех лазерных генераторов (поз.1÷3) и их исходные интенсивности равны следующим величинам:

Лазерный генератор (ЛГ) поз.1 фиг.1 генерирует излучение красного цвета (R) с длиной волны 1 =0,7 мкм с интенсивностью светового потока в одном импульсе ЛИ P 1 , например, равной одному люмену (лм).

Лазерный генератор поз.2 генерирует излучение зеленого цвета (G), с длиной волны 2 =0,5 мкм и интенсивностью светового потока P 3 =4,59 в условных единицах, например люменах, относительно ЛИ ЛГ поз.1, генерирующего излучение 1 красного цвета.

ЛГ поз.3 генерирует излучение синего цвета (В) с длиной волны 3 =0,43 мкм и интенсивностью светового потока в указанных единицах относительно излучения ЛГ поз.1, равного P 3 =0,06. Данное указанное соотношение между световыми потоками P i i=1, 2, 3, генерируемыми ЛГ 1÷3, является исходным и устанавливается путем выбора соответствующих уровней накачки используемых ЛГ. При этом указанное соотношение между интенсивностями световых потоков ЛГ P 1:P 2:P 3 =P R:P G:P B =1:4,59:0,06 обеспечивает восприятие суммарного светового потока (суммарного лазерного импульса) как излучения белого цвета. Следует отметить, что восприятие суммарного излучателя как белого цвета будет иметь место при наблюдении данного излучения как наблюдателем с пассивным наблюдением, например, с использованием бинокля, так и при приеме (наблюдении) суммарного излучения с помощью оптоэлектронных средств с широкополосным спектральным фотоприемником видимого диапазона. Указанное соотношение интенсивностей излучений ЛГ и длин волн выбрано в соответствии с известной колориметрической теорией смешения спектральных цветов .

Согласно предложенному способу при генерации ЛИ на трех длинах волн тремя различными ЛГ 1÷3 устанавливают соотношение между интенсивностями генерируемых лазерных пучков P 1 , P 2 , P 3 , соответствующими измеренному соотношению между интенсивностями W 1:W 2:W 3 спектральных компонент на указанных выбранных трех длинах волн 1 , 2 , 3 в измеренном спектральном распределении фонового излучения от контролируемого объема пространства. При этом уровень накачки ЛГ 1÷3 предварительно уже выбран в соответствии со стандартным отношением интенсивностей цветовых излучений в трехцветной колориметрической цветовой гамме .

Поэтому при выполнении этой операции осуществляют лишь небольшую подстройку уровня накачки ЛГ 1-3 до получения соотношения между интенсивностями генерируемых лазерных пучков в первом приближении соответствующими измеренному соотношению между интенсивностями W 1:W 2:W 3 спектральных компонент в измеренном фоновом излучении от КОП 45. Последующая коррекция спектрального распределения суммарного светового потока с помощью управляемых светофильтров 5, 6, 4 позволяет обеспечить точное соответствие спектрального распределения генерируемого суммарного трехдлинноволнового излучения спектральному рапределению естественного измеренного фонового излучения на указанных основных (цветовых) длинах волн. Использование для зондирования контролируемого объема пространства 45 трехдлинноволнового излучения со спектральным распределением, соответствующим спектральному распределению естественного фонового излучения от КОП, обеспечивает следующие преимущества предложенного способа.

Фоновое излучение от КОП при его приеме фотоприемниками 10, 11, 12, работающими в участках спектра со средними длинами волн 1 , 2 , 3 не вносит искажений в отношение интенсивностей (уровней) принятых оптических сигналов в соответствующих спектральных каналах приема, так как в этих каналах приема уровень фонового излучения пропорционален уровню излучения подсвета КОП на соответствующих длинах волн и соответственно уровню принятого отраженного от КОП оптического сигнала. При этом при регистрации отраженного от КОП излучения соотношение между уровнями принятых оптических сигналов (излучений) на различных длинах волн 1 , 2 , 3 не изменяются в зависимости от уровней фонового излучения на этих длинах волн 1 , 2 , 3 , а определяются только параметрами (характеристиками) спектрального портрета показателей световозвращения на 1 , 2 , 3 от обнаруженного объекта, что позволяет обеспечить более точное распознавание и обнаружение оптико-электронных приборов (ОЭП) при различных уровнях фонового излучения в различное время суток.

Следует отметить, что уровень фоновой облученности и его спектральный состав - соотношение между основными (базовыми) спектральными компонентами - в значительной степени изменяются в зависимости от высоты Солнца над горизонтом, времени суток и т.п. (см., например, стр.283, табл.15 - цветовая температура естественной освещенности в зависимости от высоты Солнца над горизонтом). Поэтому предложенный способ обнаружения ОЭП с использованием зондирования КОП трехдлинноволновым ЛИ со спектральным распределением, соответствующим спектральному распределению фонового естественного излучения, позволяет обеспечить высокоточное измерение (определение) спектрального портрета показателя световозвращения в любое время суток независимо от характера и спектрального распределения естественного внешнего фонового излучения. Уменьшение влияния распределения фонового излучения при регистрации принятого оптического сигнала, отраженного от КОП на трех длинах волн можно продемонстрировать следующим образом.

Регистрируемый оптический сигнал в электрической форме на выходах фотоприемников 10, 11, 12 J i i=1, 2, 3 можно представить в следующем виде:

,

где P u1 , P u2 , P u3 - интенсивности лазерных излучений для подсвета КОП, генерируемые лазерными генераторами и излученные на соответствующих трех длинах волн, 1 , 2 , 3 , - коэффициенты преобразования, связывающие уровень (амплитуду) излученных импульсов ЛИ с величиной принятого сигнала в соответствии с соотношением (8), а также учитывающие чувствительность и передаточные характеристики фотоприемников; e 1 , e 2 , e 3 - уровень естественного фонового излучения на соответствующей длине волны ЛИ (i=1, 2, 3), представленный в форме электрического (шумового) сигнала на выходе соответствующего фотоприемника поз.10-13 на фиг.1.

В величине i i=1÷3 содержится величина измеряемого ПСВ (11), а также ряд известных параметров, определяемых конструкцией устройства, реализующего способ, например, диаметр объектива 9.

В соответствии с измеренным уровнем спектрального распределения фонового излучения и интенсивностями P u1 , P u2 , P u3 величины J 1,2,3 (16) можно представить в следующей форме:

,

где n 2 , n 3 - известные и измеренные в блоке 25 величины соотношений между спектральными компонентами в фоновом излучении: W 1:W 2:W 3 =e 1:n 2 e 1:n 3 e 1, полученные при условии принятия величины e 1 за единицу отсчета (базовый уровень фона) при определении соотношений между спектральными составляющими фонового излучения: . W 1:W 2 =1:n 2

Соответственно, имеем аналогичные соотношения и для интенсивности излучений ЛГ P ui i=1, 2, 3, установленных в тех же пропорциях, что и W 1:W 2:W 3 . Из соотношений (17) видно, что при увеличении фоновой составляющей, например,на второй длине волны в n 2 раз относительно фоновой составляющей на первой длине волны уровень интенсивности освещающего КОП ЛИ на этой второй длине волны также увеличивается в n 2 раз и влияние изменения уровня фона на соотношение измеряемых принятых сигналов на первой и второй длинах волн уменьшается, или исключается, таким образом, реализуется автоматическая компенсация изменения уровня фона соответствующим увеличением уровня интенсивности освещающего КОП 45 ЛИ на этой длине волны. Отношение сигнал/шум(фон) в (17) одинаково для всех трех длин волн (при равных величинах 1 = 2 = 3), следовательно, фоновое излучение будет вносить одинаковые погрешности в измерение уровней пришедших сигналов и в измеренные ПСВ на всех трех длинах волн, и не будет вносить дополнительных ошибок в отношение измеренных значений ПСВ на трех длинах волн, что важно для получения достоверной информации о спектральном портрете ПСВ.

При одинаковых параметрах отражательных характеристик объекта на трех длинах волн 1 = 2 = 3 , (тест-объект), имеем соотношение J 1:J 2 равным , не зависящим от уровня фонового излучения e 1 , e 2 , e 3 , меняющегося в течение суток. Аналогично . Напомним здесь n 2 и n 3 - измеренные относительные величины фоновых составляющих на второй и третьей длинах волн относительно фоновой составляющей на первой длине волны, принятой за единицу (за базовый уровень отсчета величины фона), e 1 , e 2 , e 3 - уровни фона на соответствующих длинах волн 1, 2, 3, представленные в электрических сигналах, зарегистрированных на выходах соответствующих фотоприемников поз.10-13.

Таким образом, измерение соотношений между величинами 1 , 2 , 3 при принятии и регистрации оптического сигнала, отраженного от КОП, обеспечено в предложенном способе с уменьшением влияния действующего на момент осуществления измерений ПСВ естественного спектрального распределения фонового излучения от КОП. Следует отметить, что измерение спектрального распределения фонового излучения от КОП с помощью оптического спектроанализатора 20 и фотоприемных блоков 21-24 осуществляют в районе выбранных длин волн 1 , 2 , 3 , в некоторых спектральных поддиапазонах 1 , 2 , 3 , причем длины волн 1 ÷ 3 расположены в середине указанных диапазонов. В первом блоке обработки информации 18 после регистрации электрических сигналов J i (17) с выходов фотоприемников 10÷12 осуществляют компенсацию аддитивных фоновых составляющих e 1 , e 2 , e 3 в зарегистрированных электрических сигналах J i . Для этого осуществляют определение (оценку) уровня фоновой составляющей e 2 , являющейся наиболее интенсивной спектральной составляющей естественного фонового излучения на длине волны 2 (G - зеленого цвета). Оценку уровня данной фоновой составляющей осуществляют с помощью оптического спектроанализатора 20 и соответствующего фотоприемного блока 22, работающего на длине волны 2 . При этом, как было отмечено ранее, фотоприемный блок 22 осуществляет оценку уровня W 2 естественного фонового излучения на длине волны 2 в некотором диапазоне . Информация об этой величине W 2 уровня фоновой засветки на длине волны 2 , представляющая некоторую усредненную величину фона на 2 за некоторое время усреднения, поступает в первый блок обработки информации 18, где на основании величины W 2 формируют среднюю оценку величины фоновой составляющей e 2 (на 2), которую в блоке 18 вычисляют на основании имеющейся информации о полосе спектральной чувствительности фотоприемника 11 на 2 или о полосе пропускания интерференционного спектрального фильтра 44. Собственно чувствительность фотоприемника 11, а также информация о диаметре приемного первого объектива 9 и пропускании оптического тракта на длине волны 2 имеются в блоке 18. Далее осуществляют собственно компенсацию фоновой составляющей в зарегистрированном сигнале J 2 путем вычета в первом блоке обработки информации 18 из величины J 2 полученной оценки фоновой составляющей фоновых составляющих осуществляют на основании полученной оценки средней величины фоновой составляющей для длины волны 2 на основании следующих соотношений:

где n 2 и n 3 - в соответствии с (17), как было указано, являются известными и ранее измеренными в блоке 25 величинами соотношений между спектральными компонентами в измеренном естественном фоновом излучении. Аналогичным образом осуществляют и компенсацию фона в сигнале, зарегистрированном на выходе фотоприемника 13, работающего в широкой спектральной полосе.

Компенсация фонового излучения в зарегистрированных сигналах J i позволяет повысить точность определения распределения спектрального портрета ПСВ и осуществить более точное определение принадлежности обнаруженного ОЭ-прибора к конкретному классу аналогичных приборов.

Важным преимуществом, достигаемым в результате реализации предложенного способа, является обеспечение скрытности работы предложенного устройства обнаружения ОЭС. Это обеспечивается тем, что, как было указано выше, восприятие излучения, зондирующего КОП внешним сторонним наблюдателем, реализуется как короткая вспышка белого цвета, совпадающая по спектральному ощущению с фоновым естественным излучением в контролируемом объеме пространства, действующим в соответствующий момент времени наблюдения и действия устройства обнаружения при конкретном времени суток и высоты над горизонтом естественных источников излучения - Солнца или Луны. Поэтому излучение предлагаемого устройства будет воспринято внешним наблюдателем как случайный блик от пассивного отражателя - стекла или металлического предмета, отражающего естественное фоновое излучение, а работа устройства, как действующего обнаружительного зондирующего лазерного комплекса, не будет обнаружена. Аналогично ОЭС разведки с широкополосными оптическими фотоприемниками будут воспринимать излучение предлагаемого устройства как отражение естественного источника света от пассивного отражателя, а не как работу лазерного зондирующего комплекса. Следовательно, при работе предлагаемого способа и реализующего его устройства обеспечивается скрытность работы устройства в любое время суток и высоте естественного источника света над горизонтом.

В базе данных блока распознавания 44 хранятся эталонные спектральные портреты ПСВ различных ОЭ приборов и ОЭС наблюдателя, полученные экспериментальным (или расчетным) путем для различных базовых (основных) спектральных длин волн 1 - 3 видимого диапазона и широкой полосы длин волн , полученные для различных высот над горизонтом естественных источников света для разного времени суток или различных сезонов года (лето, зима и т.п.). При этом, как было отмечено, распознавание типа ОЭ-прибора осуществляют как на основании формирования разностного портрета спектральных ПСВ, так и на основании сравнения соотношений между отдельными спектральными составляющими ПСВ в измеренном спектральном портрете ПСВ от обнаруженного объекта ОЭ-прибора и в эталонном ПСВ из базы данных блока 44.

3 - за одно измерение - по одному отсчету принятого уровня отраженного оптического сигнала от КОП, зарегистрированного фотоприемником 13. Данный измеренный ПСВ по сигналу от фотоприемника 13 (интегральный ПСВ) совместно со спектральным портретом ПСВ на длинах волн 1 , 2 , 3 позволяет более точно идентифицировать обнаруженный объект 46 КОП, как ОЭ-прибор соответствующего известного типа (класса) оптических приборов.

Предложенное устройство обнаружения ОЭ-приборов реализовано на базе стандартных блоков и узлов. Первый и второй блоки обработки информации 18, 25 выполнены на основе стандартных электронно-вычислительных машин (ПК) и снабжены специальным программным обеспечением, обеспечивающим регистрацию и обработку поступающих электрических сигналов с выходов фотоприемников и фотоприемных блоков, измерение уровней соответствующих электрических сигналов, формирование пороговых уровней и выполнение других операций над поступающими сигналами, в соответствии с вышеприведенными операциями способа. Кроме того, второй блок обработки информации 25 осуществляет управление работой лазерных генераторов и управляемых фильтров, а также управление установлением в оптический тракт первого и второго откидных зеркал. Первый блок обработки информации 18 осуществляет также управление работой блока сканирования 8 и вырабатывает необходимые для управления блоком сканирования управляющие электрические сигналы.

Блок распознавания поз.44 представляет собой специализированную электронно-вычислительную машину (ПК) и осуществляет определение (расчет) по приведенным формулам показателей световозвращения (ПСВ) наблюдаемого и обнаруженного объектов в КОП для трех длин волн, определение (расчет) ПСВ (в полосе ) и формирование портрета ПСВ, а также распознавание обнаруженного объекта путем сравнения его измеренных величин ПСВ и величин эталонных ПСВ, хранящихся в специальных регистрах памяти блока распознавания 44.

Оптический спектроанализатор 20 может быть выполнен на базе любого известного оптического спектрального прибора (спектрографа), например, на основе высокоразрешающей дифракционной решетки . Фотоприемные блоки поз.21-24 осуществляют регистрацию интенсивностей спектрального распределения естественного фонового излучения от КОП, принятого объективом 19, на фиксированных длинах волн 1 , 2 , 3 , а также в широком спектральном диапазоне. Выходы оптического спектроанализатора 20 оптически соединены с фотоприемными блоками 21-24 с помощью волоконно-оптических световодов 47-50. Первое и второе откидные зеркала 30, 33 механически соединены с блоками управления 32, 31, представляющими собой, например, шаговые двигатели, управляемые программно от блока обработки информации. Блок сканирования 8 выполнен на основе управляемой акустооптической ячейки, или на основе отражательного зеркала, вращаемого с помощью шагового электродвигателя, управляемого по сигналам от первого блока обработки информации 18.

Таким образом осуществление подсвета КОП 45 лазерным излучением одновременно на нескольких длинах волн позволяет реализовать следующие преимущества: 1. Обеспечивает измерение ПСВ наблюдаемого в КОП объекта на нескольких длинах волн. 2. Обеспечивает получение спектрального портрета ПСВ объекта, по которому реализуется увеличение вероятности обнаружения и распознавания объекта в КОП, увеличение достоверности отнесения обнаруженного объекта к известному классу ОЭ приборов, уменьшение влияния фонового излучения на величины измеренных ПСВ и более точное измерение ПСВ, что повышает вероятность обнаружения и распознавания ОЭСН. Измерение ПСВ в широком диапазоне длин волн позволяет получить дополнительную информацию об отражательных характеристиках наблюдаемого объекта, получаемую непосредственно одним фотоприемником, что дополняет информацию, получаемую отдельными узкоспектральными фотоприемниками и в совокупности обеспечивает повышение вероятности распознавания ОЭ приборов в реальных условиях.

Источники информации

Патент РФ № 2133485 от 07.1998 г. «Способ обнаружения средств оптического и оптоэлектронного типа».

Патент РФ № 2223516 от 07.2002 г. «Способ обнаружения глаз людей и животных».

Патент РФ № 2278399 от 16.06.2004 г. «Способ обнаружения оптических и оптоэлектронных средств наблюдения и устройство для его осуществления» (прототип).

Справочник по лазерной технике под ред. А.П. Напартовича, М.: Госэнергоиздат, 1991 г.

Сигналы и помехи в лазерной локации. В.М. Орлов и др., под ред. В.Е. Зуева, М.: Радио и связь, 1985 г.

В.В. Шаронов «Свет и цвет», М.: Госфизматлит, 1961 г.

М. Борн, Э. Вольф «Основы оптики», М.: Наука, 1973 г.

Патент РФ № 2380834 от 23.06.2008 г.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ обнаружения оптических и оптико-электронных средств наблюдения (ОЭСН), включающий зондирование контролируемого объема пространства (КОП) сканируемым импульсным лазерным излучением (ЛИ) на длине волны 1 , прием отраженных сигналов ЛИ и сигналов естественного фонового излучения от КОП, преобразование принятого ЛИ в электрический сигнал, его пороговую обработку, обнаружение ОЭСН и определение дальности,

отличающийся тем, что прием сигналов естественного фонового излучения от КОП осуществляют перед зондированием КОП, в принятом естественном фоновом излучении от КОП измеряют спектральное распределение излучения, в измеренном спектральном распределении определяют соотношение между интенсивностями W 1 , W 2 , W 3 спектральных компонент, на длине волны 1 и на двух дополнительных длинах волн 2 , 3 , соответствующих интенсивностям W 1 , W 2 , W 3 , генерируют пучки импульсного ЛИ на длинах волн 1 , 1 , 1 , i . 1 , зарегистрированного широкополосным фотоприемником устройства, реализующего способ; 1 , 2 , 3 величины расходимости ЛИ, пропускания оптико-механического тракта и пропускания атмосферы.

4. Устройство обнаружения оптических и оптико-электронных средств наблюдения, содержащее последовательно размещенные на оптической оси блок сканирования, первый лазерный генератор, работающий на первой длине волны 1 , первый объектив, оптический вход которого связан посредством оптического зеркала с оптическим входом блока сканирования, первый фотоприемник, оптический вход которого посредством первого оптического фильтра, первой линзы и второго оптического зеркала связан с оптическим выходом первого объектива, первый блок обработки информации, вход которого соединен с выходом первого фотоприемника, второй объектив, оптическая ось которого параллельна оптической оси блока сканирования, электрический вход которого подключен к первому блоку обработки информации, отличающееся тем, что введены второй и третий лазерные генераторы, три управляемых оптических фильтра, оптический сумматор, оптический спектроанализатор, четыре фотоприемных блока, второй блок обработки информации, блок распознавания, первое и второе откидные зеркала, три фотоприемника, три оптических фильтра, четыре полупрозрачных зеркала и четыре оптических зеркала, а также четыре волоконно-оптических световода, при этом оптический вход оптического спектроанализатора связан с оптическим выходом второго объектива, оптический выход оптического спектроанализатора посредством волоконно-оптических световодов связан со входами четырех фотоприемных блоков, выходы которых подсоединены ко второму блоку обработки информации, оптический вход оптического сумматора через три управляемых оптических фильтра, полупрозрачное и оптическое зеркала связаны с соответствующими оптическими выходами первого, второго и третьего лазерных генераторов, оптический выход оптического сумматора связан с оптическим входом блока сканирования, а посредством первого откидного зеркала, двух оптических зеркал и второго откидного зеркала оптически связан с оптическим входом оптического спектроанализатора, оптический выход первого объектива оптически связан с вновь введенными вторым, третьим и четвертым фотоприемниками посредством трех полупрозрачных зеркал, трех линз и трех оптических фильтров, выходы второго, третьего и четвертого фотоприемников подсоединены ко входам первого блока обработки информации, выходы которого подключены к блоку распознавания и второму блоку обработки информации, выходы которого подсоединены к управляющим входам первого, второго и третьего лазерных генераторов, первого, второго и третьего управляемых фильтров и первого и второго откидных зеркал.

5. Устройство по п.4, отличающееся тем, что в нем оптический спектроанализатор выполнен на основе оптической дифракционной решетки.

6. Устройство по п.4, отличающееся тем, что в нем блок распознавания выполнен на основе цифровой электронно-вычислительной машины, содержащей блок данных величин эталонных портретов спектральных показателей световозвращения (ПСВ).

Система координат оптико-механического сканера.

Изображение строки в оптико-механическом сканере формируется за счет вращения зеркала, а строки – за счет перемещения носителя съемочной системы. Таким образом, каждый пиксель изображения имеет свои элементы внешнего ориентирования.

Ө – угол поля зрения сканера.

Началом системы координат сканера является точка S – точка пересечения оси вращения зеркала и главной оптической оси объектива. Ось x z совпадает с биссектрисой угла поля зрения съемочной системы. Ось y дополняет систему до правой.


Система координат сканерного изображения задается также как и для оптико-электронного сканера, т.е. ось y с совпадает c одной из строк изображения, начало системы координат о находится в середине строки, а ось x с – дополняет систему до правой.

По измеренным координатам точки изображенияx с y с можно получить время формирования изображения данного пикселя, а следовательно и элементы внешнего ориентирования сканера в этот момент.

Направление на точку местности М (рис.10) в системе координат сканера определяет единичный вектор r m , координаты которого можно определить следующим образом:

(18)

- размер кадра в пикселях вдоль оси y .

Определение координат точек местности по изображениям, полученным с помощью оптико-механического сканера выполняется аналогично тому, как это делалось для изображений, полученных оптико-электронным сканером.

Принцип действия лазерно-локационных съемочных систем

Лазерно-локационная съемочная система по принципу действия напоминает оптико-механический сканер, только вместо диафрагмы имеется лазер, с помощью которого сканируется (облучается) поверхность земли (рис.11). Таким образом, эта съемочная система относится к активным системам. Лазерный луч с определенной частотой посылается в сторону поверхности земли, который возвращается в съемочную систему и фиксируется в приемнике излучения в виде интенсивности отраженного сигнала. Кроме того, фиксируется время прохождения лазерного луча от лазера до поверхности земли и обратно до приемника излучений, что позволяет определить расстояние D до данной точки земли. Фиксируя угол поворота зеркала φ можно определить координаты точки поверхности земли в системе координат сканера Sxyz , а зная элементы внешнего ориентирования сканера в этот момент, можно вычислить координаты этой точки в системе координат объекта OXYZ . Таким образом, результатом работы лазерного сканера является трехмерная модель снимаемого объекта в виде облака точек с известными координатами XYZ и интенсивностью отраженного сигнала.

Система координат лазерного сканера задается следующим образом (рис.11). Начало системы S совпадает с точкой пересечения оси вращения зеркала и оптической осью системы. Ось x совпадает с осью вращения зеркала. Ось z проходит через центр проекции S и совпадает с биссектрисой угла поля зрения сканера Ө . Ось у дополняет систему до правой. Положительное направление оси x совпадает с направлением полета.

Координаты вектора SM в системе координат сканера определяют как:

(19)

Если известны элементы внешнего ориентирования , лазерного сканера в момент измерения наклонного расстояния D , то координаты точки М в системе координат объекта можно определить по известным формулам:

(20)

Элементы внешнего ориентирования , лазерного сканера во время съемки определяются с помощью навигационного комплекса в составе дифференциальной GPS- системы и инерциальной системы.

Принцип формирования радиолокационных изображений.

Системы координат.

На рис.12 показан принцип радиолокационной съемки. Короткий импульс от передатчика, расположенного на носителе (самолете или спутнике), излучается в вертикальной плоскости с помощью направленной антенны. При достижении поверхности земли волна отражается. Часть отраженной энергии возвращается к приемнику, установленному на том же месте, что и передатчик. Принятая энергия квантуется. В результате получаются сигналы, пропорциональные принятой в данный момент энергии, зависящей от отражающей способности определенного участка местности. Одновременно измеряются наклонные дальности от передатчика до каждого из элементарных участков местности. Эти элементарные участки местности определяют разрешение съемочной системы. Таким образом, плотность пикселя радиолокационного изображения зависит от интенсивности отраженного радиосигнала от соответствующей точки объекта, а положение пикселя вдоль строки пропорционально наклонной дальности до данной точки. Строки изображения формируются за счет движения носителя.

Если расстояния до точек объекта равны между собой (D 1 и D 2 на рис. 13), то эти разные точки объекта изобразятся в одной точке на снимке. Диапазон измеряемых расстояний и соответственно полоса обзора определяются параметрами съемочной системы и лежат в пределах D o и D к начальной и конечной измеряемых дальностей.

Чтобы увеличить захват местности (полосу обзора), нужно увеличить время от начала посыла импульса до их приема.

Система координат радиолокационного изображения задается следующим образом. Ось y c совпадает с одной из строк изображения. Начало системы координат о совпадает с точкой соответствующей начальной дальности D o , которая фиксируется в момент съемки. Ось x c дополняет систему до правой.

Таким образом, измерив координатуy c любой точки изображения можно узнать наклонную дальность до этой точки.

где k – масштабный коэффициент, который определяется в результате калибровки системы.

Система координат самой радиолокационной системы задается следующим образом (рис.15).

Начало системы координат совпадает с точкой излучения радиоимпульса. Оси y,z лежат в плоскости излучения импульсов. Ось x дополняет систему до правой.

Плоскость излучения радиоимпульсов может быть произвольно ориентирована в пространстве

Основным методом перевода бумажных документов в электронную форму является сканирование графический образ сканером .

Сканер

универсальные и специальные .

Универсальные сканеры обеспечивают ввод текстовой и графической информации в цветном или черно-белом формате. Среди универсальных сканеров выделяются следующие виды:

· Ручной сканер – самый простой вид сканеров, дающий наименее качественное изображение. Такой сканер не имеет движущихся частей, и сканирование производится путем перемещения сканера над поверхностью документа вручную. Их недостатком является очень узкая полоса сканирования (стандартный лист бумаги приходится сканировать в несколько проходов), а также высокие требования к самому процессу сканирования.

· Листовой сканер – позволяет за одну операцию сканировать лист бумаги стандартного формата. По конструкции напоминает факс-аппарат: оригинал втягивается внутрь специальными роликами (как в принтере) и сканируется по мере перемещения мимо неподвижной светочувствительной матрицы. Обеспечивая высокое качество сканирования, эти сканеры не позволяют обрабатывать книги и журналы без их разброшюровки на отдельные страницы.

· Планшетный сканер – наиболее универсальное устройство, подходящее под большинство задач и позволяющее сканировать любые документы (отдельные листы, книги, журналы и т.д.). Под крышкой сканера располагается прозрачное основание, на которое кладется документ. Блок сканирования перемещается вдоль документа внутри корпуса сканера. Продолжительность сканирования стандартного машинописного листа составляет от одной до нескольких секунд. Планшетные сканеры обеспечивают наилучшее качество и максимальное удобство при работе с бумажными документами.

Многие модели планшетных сканеров имеют возможность установки автоматического загрузчика документов из пачки, а также подключения слайд-модуля, осуществляющего «оцифровку» слайдов и негативных фотопленок для задач профессиональной фотографии или полиграфии.

Специальные типы сканеров предназначены для выполнения специальных функций. К ним относятся следующие:

· Барабанные сканеры обеспечивают наивысшее разрешение сканирования. Оригинал закрепляется на барабане при помощи специальных зажимов, либо при помощи смазки, а сканирование производится построчным перемещением объектива вдоль вращающегося со скоростью порядка 1000 оборотов в минуту барабана. Использование галогенного источника света, световой поток от которого концентрируется на точечной области барабана, позволяет исключить влияние помех и обрабатывать весь спектр оригиналов с высочайшим качеством.

· Сканеры форм - специальные сканеры для ввода информации с заполненных бланков. Это разновидность листовых сканеров. С помощью подобных устройств вводят данные из анкет, опросных листов, избирательных бюллетеней. От сканеров этого типа требуется не высокая разрешающая способность, а очень высокое быстродействие. В частности, для сканеров этого типа автоматизируют подачу бумажных листов в устройство.

· Штрих-сканеры - разновидность ручных сканеров, предназначенных для считывания штрих-кодов с маркировки товаров в магазинах. Штрих-сканеры позволяют автоматизировать процесс подсчета стоимости покупок. Они особенно удобны в торговых помещениях, оборудованных электронной связью и производящих расчеты с покупателями с помощью электронных платежных средств (кредитных карт, смарт-карт и т.п.).

· Слайдовый сканер - специализированный вариант планшетного сканера, разработанный для оцифровки слайдов и негативных фотопленок для задач профессиональной фотографии или полиграфии. Слайд или пленка вставляется в приемную щель и перемещается между лампой подсветки и объективом. Параметры выходного изображения достаточны для фотоальбома или полиграфического воспроизведения.

Несмотря на такое разнообразие видов сканеров, устройство и принципы их работы во многом схожи. В качестве примера рассмотрим, как работает планшетный сканер, упрощенная структурная схема которого приведена на рис. 10.

Основными элементами планшетного сканера являются:

· подложка (крышка) – закрывает оригинал, с которого производится сканирование. Изготовляется из черного материала, максимально поглощающего видимую часть спектра, чтобы предотвратить появление на результирующем изображении всевозможных бликов света, отраженного от размещенных за оригиналом предметов;

·
стекло , на котором размещается сканируемый оригинал;

· светодиодная матрица – набор датчиков (светочувствительных элементов), расположенных в одну линию для черно-белого сканирования или в три линии для сканирования в цвете за один проход. В качестве светочувствительных элементов используются приборы с зарядовой связью (ПЗС – CCD – Charge Coupled Device ). Основное назначение матрицы ПЗС – разделить световой поток на три составляющих (красную, зеленую и синюю) и преобразовать уровень освещенности в уровень напряжения;

· оптическая система – состоит из объектива и зеркал (или призмы) и предназначена для проецирования светового потока, отраженного от сканируемого оригинала, на светодиодную матрицу, осуществляющую разделение информации о цветах. Обычно используется один фокусирующий объектив (или линза), который проецирует полную ширину области сканирования на полную ширину матрицы ПЗС;

· лампа – источник света, располагаемая на движущейся каретке и освещающая сканируемую страницу. В современных моделях используются лампы с холодным катодом (Cold Cathode Lamp ), обеспечивающие световой поток заданной интенсивности и имеющие повышенные характеристики долговечности. Ориентированные на профессиональную работу с цветом, сканеры содержат схемы самокалибрации по интенсивности светового потока от лампы и поддержания стабильности светового потока при изменении температуры;

· шаговый двигатель – обеспечивает перемещение оптического блока , в который входят лампа, оптическая система и светодиодная матрица;

· блок усиления сигналов – усиливает аналоговые напряжения с выходов матрицы ПЗС, осуществляет их коррекцию и обработку;

· аналого-цифровой преобразователь (АЦП ) – преобразует аналоговые напряжения в цифровой код;

· контроллер сканера – обеспечивает прием команд от компьютера и выдачу ему полученных цифровых кодов.

Процесс сканирования достаточно прост. Оригинал (лист документа, развернутая книга и т.п.) располагается на прозрачном неподвижном стекле и закрывается крышкой. При подаче с компьютера команды на сканирование включается лампа и сканирующая каретка с оптическим блоком начинает перемещаться вдоль листа. Яркий свет от лампы падает на сканируемый оригинал, а затем, отражаясь от него, световой поток фокусируется оптической системой и поступает на приемник сигнала – матрицу ПЗС, которая порознь воспринимает красную, зеленую и синюю составляющие спектра. Полученные на выходе матрицы ПЗС аналоговые напряжения, пропорциональные спектральным составляющим, усиливаются и подаются в аналого-цифровой преобразователь, который и осуществляет цифровое кодирование. С АЦП информация выходит в «знакомом» компьютеру двоичном виде и, после обработки в контроллере сканера через интерфейс с компьютером поступает в драйвер сканера – обычно это так называемый TWAIN -модуль, с которым уже взаимодействуют прикладные программы.

! Для того, чтобы увидеть принцип работы планшетного сканера, оденьте наушники и выполните двойной щелчок мышью по этому рисунку:

Основные параметры и характеристики сканеров:

1. Разрешение сканирования (Scanning Resolution ) характеризует величину самых мелких деталей изображения, передаваемых при сканировании без искажений. Измеряется обычно в dpi (dot per inch ) - числе отдельно видимых точек на дюйм изображения. Существует несколько видов разрешения, указываемого производителем сканеров.

· Оптическое разрешение определяется плотностью элементов в ПЗС-линейке и равно количеству элементов ПЗС-линейки, деленному на ее ширину. Оно является самым важным параметром сканера, определяющим детальность получаемых с его помощью изображений. В массовых моделях планшетных сканеров обычно оно бывает равно 600 или 1200 dpi. Сканирование всегда следует выполнять с разрешением, кратным оптическому, при этом интерполяционные искажения будут минимальны.

· Механическое разрешение определяет точность позиционирования каретки с ПЗС-линейкой при перемещении вдоль изображения. Механическое разрешение обычно в 2 раза больше оптического.

· Интерполяционное разрешение получается путем 16-кратного программного увеличения изображения. Оно не несет в себе абсолютно никакой дополнительной информации об изображении по сравнению с реальным разрешением, причем в специализированных пакетах операция масштабирования и интерполяции выполняется зачастую качественнее, чем драйвером сканера.

2. Глубина цвета, илиразрядность (Color Depth ) характеризует количество бит, применяемых для хранения информации о цвете каждого пиксела. Черно-белые сканеры имеют один разряд, монохромные, как правило, 8 разрядов, а цветные сканеры, как минимум, 24 разряда (по 8 бит на хранение каждой из RGB-компонент цвета пиксела). Количество цветов, воспроизводимых 24-х-битным сканером (8 бит на канал) равно 2 24 = 16 777 216. Более совершенные сканеры могут иметь разрядность 30 или 36 (по 10 или 12 бит на каждый канал). При этом их внутренняя разрядность может быть выше внешней: «лишние» разряды используются для выполнения цветовой коррекции изображения до передачи в компьютер, хотя такая практика в основном характерна для дешевых моделей. Профессиональные и полупрофессиональные сканеры имеют и внешнюю разрядность 30, 36, 42 бит или выше.

3. Диапазон оптических плотностей (Optical Density Range ) – это динамический диапазон сканера, который во многом определяется его разрядностью. Он характеризует возможность сканера правильно передавать изображения с большим или с очень маленьким разбросом яркости (возможность отсканировать «фото черной кошки в темной комнате»). Вычисляется как десятичный логарифм от отношения интенсивности падающего на оригинал света к интенсивности отраженного света, и измеряется в ОD (Optical Density ) или просто D : 0,0 D соответствует идеально белому цвету, 4,0 D - идеально черному. У сканера этот диапазон зависит от разрядности: у 36-битного сканера он не превышает 3,6 D, у 30-битного - 3,0 D. Сканируемые изображения обычно обладают диапазоном до 2,5 D для фотографий и 3,5 D для слайдов. Дешевые 24-битные планшетные сканеры имеют динамический диапазон 1,8-2,3 D, хорошие 36-битные - до 3,1-3,4 D.

4. Размер области сканирования . Для планшетных сканеров наиболее распространены форматы A4 и A3, для рулонных сканеров - A4, а для ручных сканеров область сканирования составляет обычно полосу шириной 11 см.

5. Соответствие цветов оригинального изображения его цифровой копии . На сегодняшний день одна из самых распространенных систем управления точностью цветопередачи та, что основана на профилях International Color Consortium (ICC ), описывающая особенности цветопередачи различных устройств. Процесс создания профиля ICC базируется на сканировании специально изготовленной тестовой таблицы и сравнении полученных результатов с эталоном. По результатам и определяются характеристики устройства, учитываемые драйвером и приложениями. В дорогих моделях сканеров применяются специальные программно-аппаратные системы для цветокалибровки.

6. Качество драйвера . Все современные сканеры обмениваются данными с прикладными программами под Windows с помощью программного интерфейса TWAIN , однако предоставляемый драйвером набор функций может быть разным, его обязательно следует уточнить при выборе сканера. Среди них наиболее важны:

· возможность предварительного просмотра изображения с выбором области сканирования и количества цветов;

· возможность регулировки яркости, контраста и нелинейной цветовой коррекции;

· возможность подавления муара при сканировании изображений с печатным растром;

· возможность простейших преобразований изображения (инверсия, поворот и т.п.);

· возможность сетевого сканирования;

· возможность режимов автоматической коррекции контраста и цветопередачи;

· возможность работы сканера (в сочетании с принтером) в режиме копира;

· возможности по цветокалибровке как сканера, так и всей системы;

· возможности по пакетному сканированию;

· возможности тонкой настройки фильтров и параметров цветокоррекции.

7. Количество и качество прилагаемого к сканеру ПО. Традиционно в комплекте со сканерами поставляются ПО обработки изображений (Adobe PhotoDeluxe или Photoshop LE , ULead Photo Impact и др.) и программа оптического распознавания текста (OCR - Optical Character Recognition ). В комплект ПО обычно входят две таких программы: англоязычная (Xerox TextBridge или Caere OmniPage Pro ) и предназначенная для распознавания русских текстов программа OCR - одна из версий FineReader производства ABBY Software .

Высококачественные профессиональные и полупрофессиональные планшетные сканеры производят компании Agfa , Linotype-Hell , Microtek (ряд моделей известны под OEM-логотипом NeuHouse), Umax ; рассчитанную на массового пользователя технику выпускают компании Artec , Epson , Genius , Hewlett-Packard , Mustek , Plustek , Primax и др.

Для различных типов сканеров в табл. 3 приведены типовые значения указанных параметров.

Таблица 3. Значения параметров основных типов сканеров

Для подключения сканеров в настоящее время применяют следующие интерфейсы:

· собственный (Proprietary ) интерфейс разработчика сканера, применявшийся в ранних моделях планшетных и ручных сканеров и представлявший собой специализированную плату на шине ISA , для работы которой требовался драйвер;

· с параллельным портом EPP (LPT , или ECP ) выпускаются самые младшие модели в семействах планшетных сканеров различных производителей. Сканеры с таким интерфейсом имеют, как правило, посредственные характеристики и рассчитаны на выполнение несложных работ;

· интерфейс SCSI является стандартом для подключения высококачественных и высокопроизводительных устройств, обеспечивает межплатформенную совместимость сканера и его малую зависимость от смены операционной системы. К SCSI-сканерам обычно прилагается SCSI-плата на шине ISA , хотя такой сканер можно подключать и к полнофункциональным SCSI-контроллерам на шине PCI . Большинство 30- и 36-разрядных сканеров с разрешением 600 dpi и выше выпускаются с этим интерфейсом;

· интерфейс USB - это интерфейс для подключения сканеров, активно рекомендуемый спецификациями PC98 и PC99 . Удобство единого интерфейса для разных устройств и достаточно высокая пропускная способность привели к тому, что большинство сканеров для непрофессионального применения выпускаются именно с этим интерфейсом.

Для ввода данных в системах трехмерного моделирования и автоматизированного проектирования (САПР, или CAD/CAM - Computer-Aided Design/Modeling ) используется графический планшет (Digitizer дигитайзер) - кодирующее устройство, позволяющее вводить в компьютер двумерное, в том числе и многоцветное, изображение в виде растрового образа.

В состав графического планшета входит специальный указатель (перо) с датчиком. Собственный контроллер посылает импульсы по расположенной под поверхностью планшета сетке проводников. Получив два таких сигнала, контроллер преобразует их в координаты, передаваемые в ПК. Компьютер переводит эту информацию в координаты точки на экране монитора, соответствующие положению указателя на планшете. Планшеты, предназначенные для рисования, обладают чувствительностью к силе нажатия пера, преобразуя эти данные в толщину или оттенок линии.

Для подключения планшета обычно используется последовательный порт. Распространенными параметрами являются разрешение порядка 2400 dpi и высокая чувствительность к уровням нажатия (256 уровней). Графические планшеты и дигитайзеры производят компании CalComp , Mutoh , Wacom и другие.

Для устройств рукописного ввода информации характерна такая же схема работы, только введенные образы букв дополнительно преобразуются в буквы при помощи специальной программы распознавания, а размер площадки для ввода меньше. Устройства перьевого ввода информации чаще используются в сверхминиатюрных компьютерах PDA (Personal Digital Assistant ) или HPC (Handheld PC ), в которых нет полноценной клавиатуры.

ВЫВОДЫ

1. Клавиатура является основным устройством ввода информации в ПК. Она представляет собой совокупность механических датчиков, воспринимающих давление на клавиши и замыкающих определенную электрическую цепь. Наиболее распространены два типа клавиатур: с механическими и с мембранными переключателями .

Все клавиши разбиты на группы: буквенно-цифровые клавиши , предназначенные для ввода текстов и чисел; клавиши управления курсором (эта группа клавиш может быть использована также для ввода числовых данных, просмотра и редактирования текста на экране); специальные управляющие клавиши (переключение регистров, прерывание работы программы, вывод содержимого экрана на печать, перезагрузка ОС ПК и др.); функциональные клавиши , широко используемые в сервисных программах в качестве управляющих клавиш.

Наиболее распространенным стандартом расположения символьных клавиш является раскладка QWERTY (ЙЦУКЕН ), которая при желании может быть перепрограммирована на другую.

2. Для управления курсором удобным средством является устройство, называемое мышью . Подавляющее число компьютерных мышей используют оптико-механический принцип кодирования перемещения . В переносных ПК вместо мыши используюттрекбол,тачпад,трекпойнт.

3. Для визуального отображения информации используется видеосистема компьютера, включающая монитор (дисплей), видеоадаптер и программное обеспечение (драйверы видеосистемы).Монитор (дисплей) – это устройство визуального отображения текстовой и графической информации на экране кинескопа (электронно-лучевой трубке – ЭЛТ) или жидкокристаллическом экране (ЖК-экране).

К основным параметрам мониторов относятся: кадровая частота монитора, частотастрок, полоса видеосигнала, способ формирования изображения, размерзерна люминофора экрана монитора, разрешающая способность монитора, типоразмер экрана монитора.

Видеоадаптер (видеокарта , видеоконтроллер ) – это внутрисистемное устройство ПК, предназначенное для хранения видеоинформации и ее отображения на экране монитора. Он непосредственно управляет монитором, а также процессом вывода информации на экран с помощью изменения сигналов строчной и кадровой развертки ЭЛТ монитора, яркости элементов изображения и параметров смешения цветов.

4. Принтеры (печатающие устройства) – устройства вывода данных из ЭВМ, преобразующие информационные ASCII-коды в соответствующие им графические символы (буквы, цифры, знаки и т.п.) и фиксирующие эти символы на бумаге.

Принтеры разнятся между собой по различным признакам: по цветности – черно-белые и цветные; по способу формирования символов – знакопечатающие и знакосинтезируюшие; по принципу действия – матричные, термические, струйные, лазерные; по способу печати – ударные, безударные; по способам формирования строк – последовательные, параллельные; по ширине каретки – с широкой (375-450 мм) и узкой (250 мм) кареткой; по длине печатной строки – 80 и 132-136 символов; по набору символов – вплоть до полного набора символов ASCII; по скорости печати ; по разрешающей способности .

5. Основным методом перевода бумажных документов в электронную форму является сканирование - технологический процесс, в результате которого создается графический образ бумажного документа, как бы его «цифровая фотография». Сканирование осуществляется с помощью специального устройства, называемого сканером .

Сканер – это оптико-электронно-механическое устройство, которое предназначено для преобразования визуального образа бумажного документа в графический файл, сохраняющий растровое изображение исходного документа и предаваемый в компьютер для последующей обработки (распознавания, редактирования и т.п.).

По своему предназначению сканеры делятся на универсальные (ручные, листовые и планшетные) и специальные (барабанные, сканеры форм, штрих-сканеры, слайдовые сканеры).

Основные характеристики сканеров: разрешение сканирования (оптическое, механическое и интерполяционное), глубина цвета (разрядность), диапазон оптических плотностей, размер области сканирования, соответствие цветов оригинального изображения его цифровой копии, качество драйверов и прилагаемого программного обеспечения.

© 2024 gaurangafest.ru
Все для ПК